△ABC中,∠A=,BC=,向量=(-,cosB),=(1,tanB),且,則邊AC的長為   
【答案】分析:由向量=(-,cosB),=(1,tanB),,知,解得sinB=.在△ABC中,∠A=,BC=,由正弦定理,能求出AC.
解答:解:∵向量=(-,cosB),=(1,tanB),,
,
解得sinB=
∵△ABC中,∠A=,BC=,
∴由正弦定理,得:
解得AC=
故答案為:
點(diǎn)評:本題考查數(shù)量積判斷平面向量垂直的條件的應(yīng)用,解題時(shí)要認(rèn)真審題,注意正弦定理的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以下命題:
①若|
a
b
|=|
a
|•|
b
|
,則
a
b
;
a
=(-1,1)
b
=(3,4)
方向上的投影為
1
5

③若△ABC中,a=5,b=8,c=7,則
BC
CA
=20
;
④若
a
b
<0
,則向量
a
b
的夾角為鈍角.
則其中真命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a=2,b=1,C=60°,則邊長c=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)若△ABC的面積為
3
,a=2
3
,求b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A(x,y),B(-2,0),C(2,0),給出△ABC滿足的條件,就能得到動點(diǎn)A的軌跡方程,下表給出了一些條件及方程:
條件 方程
①△ABC周長為10;
②△ABC面積為10;
③△ABC中,∠A=90°
E1:y2=25;
E2:x2+y2=4(y≠0);
E3
x2
9
+
y2
5
=1(y≠0)
則滿足條件①、②、③的軌跡方程分別用代號表示為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下命題:
①若|
a
b
|=|
a
|•|
b
|,則
a
b
;
a
=(-1,1)在
b
=(3,4)方向上的投影為
1
5

③若△ABC中,a=5,b=8,c=7,則
BC
CA
=20;
④若非零向量
a
b
滿足|
a
+
b
|=|
b
|,則|2
b
|>|
a
+2
b
|.
⑤已知△ABC中,
PN
=
1
3
PA
+
PB
+
PC
)則向量λ(
AB
+
AC
)(λ≠0)所在直線必過N點(diǎn).其中所有真命題的序號是
①②④
①②④

查看答案和解析>>

同步練習(xí)冊答案