已知函數(shù),且函數(shù)處都取得極值。
(1)求實數(shù)的值;
(2)求函數(shù)的極值;
(3)若對任意,恒成立,求實數(shù)的取值范圍。
(1);(2)。
本試題主要是考查了導數(shù)在研究函數(shù)中的運用。
(1)
由題意可知,解得
得到解析式。
(2)由(1)知然后分析導數(shù)的符號與函數(shù)單調(diào)性的關(guān)系得到極值。
(3)對任意恒成立,,那么只要求解函數(shù)f(x)的最大值即可。
解:(1)
由題意可知,解得
(2)由(1)知,




1


+
極大值
-
極小值
+






  時,的最大值為
對于任意的,恒成立,
只需,。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)已知函數(shù)為實常數(shù)).
(I)當時,求函數(shù)上的最小值;
(Ⅱ)若方程在區(qū)間上有解,求實數(shù)的取值范圍;
(Ⅲ)證明:
(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知關(guān)于x的方程的三個實根分別為一個橢圓,一個拋物線,一個雙曲線的離心率,則的取值范圍________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導時,可以利用對數(shù)法:在函數(shù)解析式兩邊取對數(shù)得,兩邊對求導數(shù),得,于是,運用此方法可以求得函數(shù)處的切線方程是­________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),其中.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數(shù)的值;
(Ⅲ)設(shè),求在區(qū)間上的最大值.(其中為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù) (R).
(1) 若,求函數(shù)的極值;
(2)是否存在實數(shù)使得函數(shù)在區(qū)間上有兩個零點,若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)設(shè)函數(shù) 
(1)當時,求函數(shù)的最大值;
(2)令,()其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是定義在R上的奇函數(shù),且f(2)=0,當x>0時,有的導數(shù)<0恒成立,則不等式的解集是:
A.(一2,0)(2,+ B.(一2,0)(0,2)
C.(-,-2)(2,+ D.(-,-2)(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)
已知函數(shù)(其中是自然對數(shù)的底數(shù),為正數(shù))
(I)若處取得極值,且的一個零點,求的值;
(II)若,求在區(qū)間上的最大值;
(III)設(shè)函數(shù)在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

同步練習冊答案