已知函數(shù),當(dāng)時(shí),恒有
(1)求證:是奇函數(shù);
(2)如果為正實(shí)數(shù),,并且,試求在區(qū)間[-2,6]上的最值.
(1)證明見(jiàn)解析;(2)最大值為1,最小值為-3..

試題分析:解題思路:(1)利用奇函數(shù)的定義進(jìn)行證明;(2)先證明的單調(diào)性,再求在的最值.
規(guī)律總結(jié):(1)證明函數(shù)奇偶性的步驟:①驗(yàn)證函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),②判斷的關(guān)系,③下結(jié)論;(2)先利用函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性,再根據(jù)單調(diào)性求最值.注意點(diǎn):判定或證明函數(shù)的奇偶性時(shí),一定不要忘記驗(yàn)證函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng).
試題解析: (1)函數(shù)定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824055537478303.png" style="vertical-align:middle;" />,其定義域關(guān)于原點(diǎn)對(duì)稱(chēng),
,令,
,令,
,得
,得,為奇函數(shù).
(2)設(shè)

,,,即上單調(diào)遞減.
為最大值,為最小值.


在區(qū)間上的最大值為1,最小值為-3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定義在上的三個(gè)函數(shù),,,且處取得極值.
(1)求a的值及函數(shù)的單調(diào)區(qū)間.
(2)求證:當(dāng)時(shí),恒有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù)
(1)若在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)若,若函數(shù)在 [1,3]上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)中,與函數(shù)y=
1
x
定義域相同的函數(shù)為(  )
A.y=|x|B.y=
1
x
C.y=x0D.y=
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)=
1
1-x
的定義域?yàn)椋ā 。?table style="margin-left:0px;width:650px;">A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)是奇函數(shù),且在(-∞,+∞)上為增函數(shù),若x,y滿(mǎn)足等式f(2x2-4x)+f(y)=0,則4x+y的最大值是(  )
A.10 B.-6C.8 D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù),設(shè)是函數(shù)的零點(diǎn)的最大值,則下列論斷一定錯(cuò)誤的是(       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,關(guān)于的函數(shù),則下列結(jié)論中正確的是(    )
A.有最大值B.有最小值
C.有最大值D.有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),當(dāng)x>0時(shí),f(x)=lnx-ax,若函數(shù)在定義域上有且僅有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(e,+∞)B.(0,)
C.(1,)D.(-∞,)

查看答案和解析>>

同步練習(xí)冊(cè)答案