考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)可得a1+a10=a2+a9=…=a5+a6=2,進(jìn)而可得f(a1)+f(a10)為定值6,同理可得f(a2)+f(a9)=f(a3)+f(a8)=…f(a5)+f(a6)=6,進(jìn)而可得答案.
解答:
解:∵等差數(shù)列中a1+a2+…+a10=10,
∴由等差數(shù)列的性質(zhì)可得a1+a10=a2+a9=…=a5+a6=2,
∴f(a1)+f(a10)=a13+a103-3(a12+a102)+5(a1+a10)
=(a1+a10)(a12+a102-a1a10)-3(a12+a102)+5(a1+a10)
=2(a12+a102-a1a10)-3(a12+a102)+5×2
=-(a12+a102)-2a1a10+10
=-(a1+a10)2+2a1a10-2a1a10+10
=-4+10=6
同理可得f(a2)+f(a9)=f(a3)+f(a8)=…f(a5)+f(a6)=6,
∴f(a1)+f(a2)+…+f(a10)=5×6=30,
故答案為:30
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì),涉及立方和公式的應(yīng)用,得出f(a2)+f(a9)=f(a3)+f(a8)=…f(a5)+f(a6)=6是解決問題的關(guān)鍵,屬中檔題.