下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是( 。
A、y=-
1
x
B、y=lgx
C、y=cosx
D、y=e|x|
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)基本初等函數(shù)的單調(diào)性奇偶性,逐一分析答案四個函數(shù)在(0,+∞)上的單調(diào)性和奇偶性,逐一比照后可得答案.
解答: 解:y=-
1
x
在(0,+∞)上單調(diào)遞增,但為奇函數(shù);
y=lgx不是奇函數(shù)也不是偶函數(shù),但在(0,+∞)上單調(diào)遞增;
y=cosx為偶函數(shù),但在(0,+∞)上不是單調(diào)函數(shù);
y=e|x|為偶函數(shù),且在(0,+∞)上單調(diào)遞增;
故選:D.
點評:本題考查的知識點是函數(shù)的奇偶性與單調(diào)性的綜合,熟練掌握各種基本初等函數(shù)的單調(diào)性和奇偶性是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△A1B1C1與△A2B2C2滿足A1B1=A2B2=8,A1C1=A2C2=b,B1=B2=
π
6
,則當(dāng)b=
 
時,一定能判定△A1B1C1與△A2B2C2全等.(寫出一個值即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=(x2-8)ex,則f(x)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,如果c=
3
a,B=30°,那么角C等于(  )
A、60°B、90°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)使得3f(x-1)-f(1-x)=2x-1成立,則f(x)=(  )
A、f(x)=2x
B、f(x)=
1
2
x
C、f(x)=
1
2
x+
1
2
D、f(x)=
1
2
x-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sin(3x+
π
3
)的圖象可看成y=3sin3x的圖象按如下平移變換而得到的(  )
A、向左平移
π
9
個單位
B、向右平移
π
9
個單位
C、向左平移
π
3
個單位
D、向右平移
π
3
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上以2為周期的奇函數(shù)f(x)滿足當(dāng)x∈(0,1]時,f(x)=
1-x
x
,則f(-
5
2
)+f(0)=(  )
A、不存在
B、-
7
5
C、
3
5
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:p:x<k,q:
3
x+1
≤1,如果p是q的充分不必要條件,則k的取值范圍是(  )
A、[2,+∞)
B、(2,+∞)
C、(-∞,-1)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+x+b,函數(shù)g(x)=ex-f′(x)的零點所在的區(qū)間是[k,k+1](k∈Z),則k的值等于( 。
A、-1B、0C、1D、0或1

查看答案和解析>>

同步練習(xí)冊答案