某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖形如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/米2,水池所有墻的厚度忽略不計,試設(shè)計污水處理池的長與寬,使總造價最低,并求出最低總造價.
分析:污水處理池的底面積一定,設(shè)寬為x米,可表示出長,從而得出總造價f(x),利用基本不等式求出最小值即可.
解答:解:設(shè)污水處理池的寬為x米,則長為
162
x
米.
則總造價f(x)=400×(2x+
2×162
x
)+248×2x+80×162=1296x+
1296×100
x
+12960
=1296(x+
100
x
)+12960≥1296×2×
x•
100
x
+12960=38880(元),
當且僅當x=
100
x
(x>0),即x=10時,取等號.
∴當長為16.2米,寬為10米時總造價最低,最低總造價為38880元.
點評:本題主要考查了建立函數(shù)解析式,利用基本不等式求函數(shù)最值的能力,同時考查了運算求解能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80
元/米2,水池所有墻的厚度忽略不計.
(1)試設(shè)計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設(shè)計污水池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/米2,水池所有墻的厚度忽略不計.
(1)設(shè)污水處理池的寬為x,求總造價f(x)的函數(shù)解析式;
(2)要使總造價最低,求最低總造價及對應(yīng)污水處理池的長和寬.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某造紙廠擬建一座平面圖形為矩形且面積為200平方米的二級污水處理池,池的深度一定,池的外圈 壁建造單價為每米400元,中間一條隔壁建造單價為每米100元,池底建造單價每平方米60元(池壁厚忽略不計).

(1)污水處理池的長設(shè)計為多少米時,可使總造價最低?

(2)如果受地形限制,污水處理池的長、寬都不能超過14.5米,那么此時污水處理池的長設(shè)計為多少米時,可使總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省菏澤市鄄城一中高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80
元/米2,水池所有墻的厚度忽略不計.
(1)試設(shè)計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設(shè)計污水池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

同步練習冊答案