【題目】設△ABC的內角A,B,C所對的邊分別為a,b,c,已知A為鈍角,且2a ,若 ,則△ABC的面積的最大值為 .

【答案】
【解析】∵a ,
∴由正弦定理可得:2sinAsinA= (sinCcoB+sinBcosC)= sin(B+C)= sinA
A為鈍角,sinA>0,
∴sinA= ,可得:cosA= ,
∴由余弦定理可得:a2=b2+c2+bc , ①
,②
∴由①②聯(lián)立可得:b+c=2,可得:b+c=22 ,(當且僅當b=c時等號成立),可得:bc1,
SABC= bcsinA ×1× = .
故答案為:
將題目所給等式變形,得到角A的大小,再根據(jù)余弦定理,聯(lián)立方程得到b+c的值,最后用均值不等式求得△ABC的面積的最大值。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知任意角以坐標原點為頂點,軸的非負半軸為始邊,若終邊經過點,且,定義:,稱“”為“正余弦函數(shù)”,對于“正余弦函數(shù)”,有同學得到以下性質:

①該函數(shù)的值域為; ②該函數(shù)的圖象關于原點對稱;

③該函數(shù)的圖象關于直線對稱; ④該函數(shù)為周期函數(shù),且最小正周期為;

⑤該函數(shù)的遞增區(qū)間為.

其中正確的是__________.(填上所有正確性質的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市電視臺為了提高收視率而舉辦有獎問答活動,隨機對該市15~65歲的人群抽樣了 人,回答問題統(tǒng)計結果及頻率分布直方圖如圖表所示.

(1)分別求出 的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應各抽取多少人?
(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求所抽取的人中第2組至少有1人獲得幸運獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)的圖象的相鄰兩條對稱軸之間的距離為,,則下列說法正確的是__________.(寫出所有正確結論的序號)

是偶函數(shù);

②函數(shù)的圖象關于點對稱;

③函數(shù)上單調遞增;

④將函數(shù)的圖象向右平移個單位長度,可得函數(shù)的圖象;

的對稱軸方程為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn , 且Sn滿足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),則S1+S2+…+S2017=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cosx(sinx+cosx)-,x∈R.

(1)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;

(2)設>0,若函數(shù)g(x)=f(x+)為奇函數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】
(1)求對稱軸是 軸,焦點在直線 上的拋物線的標準方程;
(2)過拋物線 焦點 的直線 它交于 兩點,求弦 的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,且過點
(Ⅰ)求橢圓 的方程;
(Ⅱ)設直線 與圓 相切于點 ,且 與橢圓 只有一個公共點 .
①求證: ;
②當 為何值時, 取得最大值?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產不同規(guī)格的一種產品,根據(jù)檢測標準,其合格產品的質量 與尺寸 之間滿足關系式 為大于 的常數(shù)),現(xiàn)隨機抽取6件合格產品,測得數(shù)據(jù)如下:

對數(shù)據(jù)作了處理,相關統(tǒng)計量的值如下表:

(1)根據(jù)所給數(shù)據(jù),求 關于 的回歸方程(提示:由已知, 的線性關系);
(2)按照某項指標測定,當產品質量與尺寸的比在區(qū)間 內時為優(yōu)等品,現(xiàn)從抽取的6件合格產品再任選3件,求恰好取得兩件優(yōu)等品的概率;
(附:對于一組數(shù)據(jù) ,其回歸直線 的斜率和截距的最小二乘法估計值分別為

查看答案和解析>>

同步練習冊答案