年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
橢圓G:的兩個(gè)焦點(diǎn)F1(-c,0)、F2(c,0),M是橢圓上的一點(diǎn),且滿足
(Ⅰ)求離心率e的取值范圍;
(Ⅱ)當(dāng)離心率e取得最小值時(shí),點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為求此時(shí)橢圓G的方程;(ⅱ)設(shè)斜率為k(k≠0)的直線l與橢圓G相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),問A、B兩點(diǎn)能否關(guān)于過點(diǎn)的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年四川省江油市高二上學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題
橢圓G:的兩個(gè)焦點(diǎn)為是橢圓上一點(diǎn),且滿.[來源:學(xué)#科#網(wǎng)]
(1)求離心率的取值范圍;
(2)當(dāng)離心率取得最小值時(shí),點(diǎn)到橢圓上點(diǎn)的最遠(yuǎn)距離為.
①求此時(shí)橢圓G的方程;
②設(shè)斜率為的直線與橢圓G相交于不同兩點(diǎn),為的中點(diǎn),問:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:0111 期中題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
橢圓G:的兩個(gè)焦點(diǎn)為F1、F2,短軸兩端點(diǎn)B1、B2,已知F1、F2、B1、B2四點(diǎn)共圓 ,且點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為
(1)求此時(shí)橢圓G的方程;
(2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問E、F兩點(diǎn)能否關(guān)于過點(diǎn)的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
橢圓G:的兩個(gè)焦點(diǎn)為F1、F2,短軸兩端點(diǎn)B1、B2,已知
F1、F2、B1、B2四點(diǎn)共圓,且點(diǎn)N(0,3)到橢圓上的點(diǎn)最遠(yuǎn)距離為
(1)求此時(shí)橢圓G的方程;
(2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問E、F兩點(diǎn)能否關(guān)于過點(diǎn)P(0,)、Q的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com