已知x=(),n∈N+,求(x+)n的值.

答案:
解析:

  解:∵1+x2=1+()2()=[()]2,

  ∴

  ∴x+

  ∴(x+)n=()n=5.


提示:

利用x=()來(lái)化簡(jiǎn),去掉根號(hào),再把x+化為指數(shù)式.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省鶴崗一中2010-2011學(xué)年高二下學(xué)期期末考試數(shù)學(xué)文科試題 題型:044

已知x=1是函數(shù)f(x)=mx3-3(m+1)x2+nx+1的一個(gè)極值點(diǎn),其中m,n∈R,m<0

(1)求m與n的關(guān)系表達(dá)式.

(2)求f(x)的單調(diào)區(qū)間

(3)當(dāng)x∈[-1,1]時(shí)函數(shù)y=f(x)的圖象上一任意點(diǎn)的切線斜率恒大于3m,求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京市石景山區(qū)2006-2007學(xué)年度高三年級(jí)第一學(xué)期期末統(tǒng)一考試、數(shù)學(xué)(文科) 題型:038

已知定義在R上的函數(shù)f(x),對(duì)任意的實(shí)數(shù)m、n,都有f(m+n)=f(m)f(n)成立,且當(dāng)x>0時(shí),有f(x)>1成立.

(1)

求f(0)的值,并證明當(dāng)x<0時(shí),有0<f(x)<1成立;

(2)

判斷函數(shù)f(x)在R上的單調(diào)性,并證明你的結(jié)論;

(3)

若f(1)=2,數(shù)列{an}滿足an=f(n)(n∈N*),記,且對(duì)一切正整數(shù)n有恒成立,求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:三點(diǎn)一測(cè)叢書(shū) 高中數(shù)學(xué) 必修5 (江蘇版課標(biāo)本) 江蘇版課標(biāo)本 題型:044

已知公差不為0的等差數(shù)列{an}中,a1+a2+a3+a4=20,a1,a2,a4成等比數(shù)列,求集合A={x|x=an,n∈N*且100<x<200}的元素個(gè)數(shù)及所有這些元素的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:吉林省實(shí)驗(yàn)中學(xué)2012屆高三第六次模擬考試數(shù)學(xué)理科試題 題型:022

已知定義在[1,+∞)上的函數(shù)f(x)=.給出下列結(jié)論:

①函數(shù)f(x)的值域?yàn)閇0,4];

②關(guān)于x的方程f(x)=()n(n∈N*)有2n+4個(gè)不相等的實(shí)數(shù)根;

③當(dāng)x∈[2n-1,2n](n∈N*)時(shí),函數(shù)f(x)的圖象與x軸圍成的圖形面積為S,則S=2;

④存在x0∈[1,8],使得不等式x0f(x0)>6成立,

其中你認(rèn)為正確的所有結(jié)論的序號(hào)為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)自變量取值區(qū)間A,若其值域區(qū)間也為A,則稱區(qū)間Af(x)的保值區(qū)間.

(1)求函數(shù)f(x)=x2形如[n,+∞)(n∈R)的保值區(qū)間;

(2)g(x)=x-ln(xm)的保值區(qū)間是[2,+∞),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案