【題目】《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100ml(不含80)之間,屬于酒后駕車;在80mg/100ml(含80)以上時(shí),屬于醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動(dòng)中,依法檢查了300輛機(jī)動(dòng)車,查處酒后駕車和醉酒駕車的駕駛員共20人,檢測結(jié)果如表:
酒精含量(mg/100ml) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70)[] | [70,80) | [80,90) | [90,100] |
人數(shù) | 3 | 4 | 1 | 4 | 2 | 3 | 2 | 1 |
(Ⅰ)繪制出檢測數(shù)據(jù)的頻率分布直方圖(在圖中用實(shí)線畫出矩形框即可);
(Ⅱ)求檢測數(shù)據(jù)中醉酒駕駛的頻率,并估計(jì)檢測數(shù)據(jù)中酒精含量的眾數(shù)、平均數(shù).
【答案】(Ⅰ)詳見解析(Ⅱ)0.15,眾數(shù)是35與55,平均數(shù)55
【解析】
試題分析:(1)計(jì)算酒精含量(mg/100ml)在各小組中的頻率/組距,繪制出頻率分布直方圖即可;(2)計(jì)算檢測數(shù)據(jù)中酒精含量在80mg/100ml(含80)以上的頻率,根據(jù)頻率分布直方圖中小矩形圖最高的底邊的中點(diǎn)是眾數(shù),再計(jì)算數(shù)據(jù)的平均數(shù)值
試題解析:(1)酒精含量(mg/100ml)在[20,30)的為=0.015,
在[30,40)的為=0.020, 在[40,50)的為=0.005,
在[50,60)的為=0.20, 在[60,70)的為=0.010,
在[70,80)的為=0.015, 在[80,90)的為=0.010,
在[90,100]的為=0.005; …………………4分
繪制出酒精含量檢測數(shù)據(jù)的頻率分布直方圖如圖所示:
…………………6分
(2)檢測數(shù)據(jù)中醉酒駕駛(酒精含量在80mg/100ml(含80)以上時(shí))的頻率是; …7分
根據(jù)頻率分布直方圖,小矩形圖最高的是[30,40)和[50,60),
估計(jì)檢測數(shù)據(jù)中酒精含量的眾數(shù)是35與55;…………………9分
估計(jì)檢測數(shù)據(jù)中酒精含量的平均數(shù)是
0.015×10×25+0.020×10×35+0.005×10×45+0.020×10×55
+0.010×10×65+0.015×10×75+0.010×10×85+0.005×10×95=55.…………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)也為拋物線的焦點(diǎn),過點(diǎn)的直線交拋物線于兩點(diǎn).
(Ⅰ)若點(diǎn)滿足,求直線的方程;
(Ⅱ)為直線上任意一點(diǎn),過點(diǎn)作的垂線交橢圓于兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設(shè)備升級(jí),生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元.
(1)若設(shè)備升級(jí)后生產(chǎn)這批產(chǎn)品的利潤不低于原來生產(chǎn)該批產(chǎn)品的利潤,求的取值范圍;
(2)若生產(chǎn)這批產(chǎn)品的利潤始終不高于設(shè)備升級(jí)后生產(chǎn)這批產(chǎn)品的利潤,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(I)求直方圖中的值;
(II)求月平均用電量的眾數(shù)和中位數(shù);
(III)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,且滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log,Sn=b1+b2+…+bn,求使成立的正整數(shù)n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC=.
(Ⅰ)證明:DE∥平面BCF;
(Ⅱ)證明:CF⊥平面ABF;
(Ⅲ)當(dāng)AD=時(shí),求三棱錐F﹣DEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線
(1)化的方程為普通方程,并說明它們分別表示什么曲線;
(2)若上的點(diǎn)P對(duì)應(yīng)的參數(shù)為,Q為上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知過點(diǎn)的直線的參數(shù)方程是(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程式為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線相切.
(1)求圓的方程;
(2)過點(diǎn)的直線截圓所得弦長為,求直線的方程;
(3)設(shè)圓與軸的負(fù)半抽的交點(diǎn)為,過點(diǎn)作兩條斜率分別為的直線交圓于兩點(diǎn),且,證明:直線過定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com