有甲乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,
得到如下的列聯(lián)表:
優(yōu)秀 非優(yōu)秀 總計
甲班 10
乙班 30
合計 105
已知在全部105人中抽到隨機抽取1人為優(yōu)秀的概率為
2
7

(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認為“成績與班級有關(guān)系”;
(Ⅲ)若按下面的方法從甲班優(yōu)秀的學生抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到6或10號的概率.
分析:(Ⅰ)由全部105人中抽到隨機抽取1人為優(yōu)秀的概率為
2
7
,我們可以計算出優(yōu)秀人數(shù)為30,我們易得到表中各項數(shù)據(jù)的值.
(Ⅱ)我們可以根據(jù)列聯(lián)表中的數(shù)據(jù),代入公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,計算出k值,然后代入離散系數(shù)表,比較即可得到答案
(Ⅲ)本小題考查的知識點是古典概型,關(guān)鍵是要找出滿足條件抽到6或10號的基本事件個數(shù),及總的基本事件的個數(shù),再代入古典概型公式進行計算求解.
解答:解:(Ⅰ)
優(yōu)秀 非優(yōu)秀 總計
甲班 10 45 55
乙班 20 30 50
合計 30 75 105
(Ⅱ)根據(jù)列聯(lián)表中的數(shù)據(jù),得到k=
105×(10×30-20×45)2
55×50×30×75
≈6.109>3.841

因此有95%的把握認為“成績與班級有關(guān)系”.
(Ⅲ)設(shè)“抽到6或10號”為事件A,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)為(x,y).
所有的基本事件有(1,1)、(1,2)、(1,3)…(6,6),共36個.
事件A包含的基本事件有:(1,5)、(2,4)、(3,3)、(4,2)、
(5,1)(4,6)、(5,5)、(6、4),共8個
P(A)=
8
36
=
2
9
點評:獨立性檢驗的應用的步驟為:根據(jù)已知條件將數(shù)據(jù)歸結(jié)到一個表格內(nèi),列出列聯(lián)表,再根據(jù)列聯(lián)表中的數(shù)據(jù),代入公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,計算出k值,然后代入離散系數(shù)表,比較即可得到答案.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

從甲、乙兩個班級各隨機抽取10名同學的數(shù)學成績進行統(tǒng)計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.
(I)試完成甲班制取10名同學數(shù)學成績頻率分布表,并估計甲班的及格率.
分組 頻數(shù) 頻率
[70,80)
[80,90)
[90,100)
[100,110)
(II)從每班抽取的同學中各抽取一人,求至少有一人及格的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省示范高中高三(上)摸底數(shù)學試卷(文科)(解析版) 題型:解答題

從甲、乙兩個班級各隨機抽取10名同學的數(shù)學成績進行統(tǒng)計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.
(I)試完成甲班制取10名同學數(shù)學成績頻率分布表,并估計甲班的及格率.
分組頻數(shù)頻率
[70,80)
[80,90)
[90,100)
[100,110)
(II)從每班抽取的同學中各抽取一人,求至少有一人及格的概率.

查看答案和解析>>

同步練習冊答案