(本小題滿分12分)

已知函數(shù)f(x)=log a (a>0且a≠1)的圖像關(guān)于原點(diǎn)對(duì)稱

(1)求m的值;  

(2)判斷函數(shù)f(x)在區(qū)間(1,+∞)上的單調(diào)性并加以證明;

(3)當(dāng)a>1,x∈(t,a)時(shí), f(x)的值域是(1,+∞),求a與t的值。

 

 

【答案】

解:(1)由已知f(-x)=-f(x) 即loga+loga=0         ………………………….1分

∴(1-mx)(1+mx)=(x+1)(1-x)      1-m2x2=1-x2                 ∴m=1    …………….3分

當(dāng)m=1時(shí),=-1<0 舍去     ∴ m=-1                                ……………….4分

(2)由(1)得f(x)=loga 任取1<x1<x2

f(x2)- f(x1)= loga- loga= loga   

1<x1<x∴(x2+1)(x1-1)-(x2-1)(x1+1)=2(x1-x2) ∴0<<1

當(dāng)a∈(0,1)時(shí) loga>0,∴f(x2) > f(x1),此時(shí)f(x)為增函數(shù)…7

當(dāng)a∈(1,+∞)時(shí) loga<0,∴f(x2) < f(x1) 此時(shí)為減函數(shù)。.8分            

(3)有(2)知:當(dāng)a>1時(shí),f(x)在(1,+∞)為減函數(shù)

>0有x<-1或x>1∴(t,a) (1,+∞)        …………………………..9分

即f(x)在(t,a)上遞減,∴f(a)=1, ∴a=1+,且→+∞,∴t=1 ……………12分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案