【題目】如圖,四棱錐中,面,,,,.
(1)證明:平面;
(2)若為中點,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)由平面可得出,再由得出,再利用線面垂直的判定定理可得出結(jié)論;
(2)計算出,然后以點為坐標(biāo)原點,以、、過點且垂直于的直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可計算出二面角的余弦值.
(1)平面,平面,,
,,,平面;
(2)取的中點,連接,
,且,且,
所以,四邊形為平行四邊形,,
,,則是邊長為的等邊三角形,
以點為坐標(biāo)原點,以、、過點且垂直于的直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,
則、、、、,
設(shè)平面的法向量為,,,
由,令,則,則,
易知平面的一個法向量為,,
由圖形可知,二面角為銳角,它的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為實數(shù),函數(shù).
(1)已知,討論的奇偶性;
(2)若,①若,求在上的值域;
②若,解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=若函數(shù)f (x)的圖象與直線y=x有三個不同的公共點,則實數(shù)a的取值集合為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣。窡舨捎缅F形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設(shè)為燈罩軸線與路面的交點,圓心在線段上.
(1)當(dāng)為何值時,點恰好在路面中線上?
(2)記圓心在路面上的射影為,且在線段上,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體的棱長為1,線段上有兩個動點,,且,則下列結(jié)論中錯誤的是____________.
①;
②平面;
③三棱錐的體積為定值;
④異面直線,所成的角為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個工廠在某年里連續(xù)10個月每月產(chǎn)品的總成本(萬元)與該月產(chǎn)量(萬件)之間有如下一組數(shù)據(jù):
1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 | |
2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)①建立月總成本與月產(chǎn)量之間的回歸方程;②通過建立的關(guān)于的回歸方程,估計某月產(chǎn)量為1.98萬件時,產(chǎn)品的總成本為多少萬元?(均精確到0.001)
附注:①參考數(shù)據(jù):,,,,.
②參考公式:相關(guān)系數(shù),,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知動直線l過右焦點F,且與橢圓C交于A、B兩點,已知Q點坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè),
①當(dāng)時,求曲線在點處的切線方程;
②當(dāng)時,求證:對任意恒成立.
(2)討論的極值點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com