用長度為定值l的鐵絲圍成一個底面邊長是x,體積是V的正四棱柱形狀的框架.
(Ⅰ)試將V表示成x的函數(shù),并指出x的取值范圍;
(Ⅱ)當正四棱柱的底面邊長和高之比是多少時,其體積最大?
(Ⅰ)由長度為定值l的鐵絲圍成的底面邊長為x,則正四棱柱的高為
l-8x
4
,根據(jù)體積公式得:
V=x2
l-8x
4
=
l
4
x2-2x3,
又因為l-8x>0且x>0解得x的取值范圍是(0,
1
8
).
(Ⅱ)求出V′=
l
2
x-6x2=-6x(x-
l
12
),
在(0,
l
12
)上,V′>0,函數(shù)單調(diào)遞增;在(
l
12
,
l
8
)上,V′<0,函數(shù)單調(diào)遞減.
∴當x=
l
12
時,V取最大值.
此時,正四棱柱的高為
l
12
,于是當正四棱柱底面邊長和高之比是1時,其體積最大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用長度為定值l的鐵絲圍成一個底面邊長是x,體積是V的正四棱柱形狀的框架.
(Ⅰ)試將V表示成x的函數(shù),并指出x的取值范圍;
(Ⅱ)當正四棱柱的底面邊長和高之比是多少時,其體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•營口二模)如圖,用一根鐵絲折成一個扇形框架,要求框架所圍扇形面積為定值S,半徑為r,弧長為l,則使用鐵絲長度最小值時應(yīng)滿足的條件為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用長度為定值l的鐵絲圍成一個底面邊長是x,體積是V的正四棱柱形狀的框架.
(Ⅰ)試將V表示成x的函數(shù),并指出x的取值范圍;
(Ⅱ)當正四棱柱的底面邊長和高之比是多少時,其體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年春高二期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

用長度為定值l的鐵絲圍成一個底面邊長是x,體積是V的正四棱柱形狀的框架.
(Ⅰ)試將V表示成x的函數(shù),并指出x的取值范圍;
(Ⅱ)當正四棱柱的底面邊長和高之比是多少時,其體積最大?

查看答案和解析>>

同步練習(xí)冊答案