已知直線:y=k (x+2)與圓O:相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),ABO的面積為S.

(1)試將S表示成的函數(shù)S(k),并求出它的定義域;

(2)求S的最大值,并求取得最大值時(shí)k的值.

 

【答案】

(1) 

(2) 即, .

【解析】(1)先求出三角形的高,即原點(diǎn)O到直線的距離,然后再利用圓的弦長(zhǎng)公式求出三角形的底的長(zhǎng)度,進(jìn)而確定

(2)求最值要換元.令,這樣轉(zhuǎn)化成二次函數(shù)最值解決即可.

解:如圖,(1)直線方程為: ,且.——————2分

原點(diǎn)O到的距離為——————3分

弦長(zhǎng)——————4分

△ABO面積————————6分

 ——————————8分

(2) 令則——————10分

.————12分

當(dāng)t=時(shí), 時(shí), ————————14分

另解:△ABO面積S=

  ,此時(shí)

,所以.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=k(x+2)(k>0)與拋物線C:y2=8x相交于A、B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=2|FB|,則k=( 。
A、
1
3
B、
2
3
C、
2
3
D、
2
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣州模擬)已知直線y=k(x-2)(k>0)與拋物線y2=8x相交于A、B兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),若|FA|=2|FB|,則k的值為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=k(x-2)(k∈R)與雙曲線
x2
m
-
y2
8
=1
,某學(xué)生作了如下變形;由
y=k(x-2)
x2
m
-
y2
8
=1
消去y后得到形如關(guān)于x的方程ax2+bx+c=0.討論:當(dāng)a=0時(shí),該方程恒有一解;當(dāng)a≠0時(shí),b2>4ac恒成立,假設(shè)該學(xué)生的演算過(guò)程是正確的,則根據(jù)該學(xué)生的演算過(guò)程所提供的信息,求出實(shí)數(shù)m的取值范圍應(yīng)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•吉林二模)已知直線y=k(x+1)(k>0)與拋物線C:y2=4x相交于A、B兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),若|FA|=2|FB|,則k=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=k(x+1)(k>0)與函數(shù)y=|sinx|的圖象恰有四個(gè)公共點(diǎn)A(x1,y1),B(x2,y2),
C(x3,y3),D(x4,y4)其中x1<x2<x3<x4,則有(  )
A、sinx4=1B、sinx4=(x4+1)cosx4C、sinx4=kcosx4D、sinx4=(x4+1)tanx4

查看答案和解析>>

同步練習(xí)冊(cè)答案