【題目】三棱錐的三組相對棱(相對的棱是指三棱錐中成異面直線的一組棱)分別相等,且長分別為,其中,則該三棱錐體積的最大值為

A. B. C. D.

【答案】D

【解析】試題分析:三棱錐擴展為長方體,三棱錐的體積轉(zhuǎn)化為長方體的體積與四個三棱錐的體積的差,推出B不正確,則C不正確,通過特殊圖形說明D正確

解:如圖設(shè)長方體的三度為,a,b,c;所以所求三棱錐的體積為:abc-4××abc=abca2+b2=2,b2+c2=n2,a2+c2=m2,所以2a2+b2+c2=n2+m2+2=8a2+b2+c2=4.因為4≥3

,abc≤此時a=b=c,與n2+m2=6,a2+b2=2,矛盾,所以選項B不正確;則C不正確;當(dāng)?shù)酌嫒切问堑妊切螘r,m=n=

不難求出三棱錐體積的最大值為,D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,有下列說法:
①若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點;
②若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上可能有零點;
③若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點;
④若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上至少有一個零點;
其中正確說法的序號是(把所有正確說法的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形與直角梯形所在平面互相垂直, ,

(I)求證: 平面

(II)求證: 平面

(III)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國Ⅳ標準規(guī)定:輕型汽車的屢氧化物排放量不得超過80mg/km.根據(jù)這個標準,檢測單位從某出租車公司運營的A、B兩種型號的出租車中分別抽取5輛,對其氮氧化物的排放量進行檢測,檢測結(jié)果記錄如表(單位:mg/km)

A

85

80

85

60

90

B

70

x

95

y

75

由于表格被污損,數(shù)據(jù)x,y看不清,統(tǒng)計員只記得A、B兩種出租車的氮氧化物排放量的平均值相等,方差也相等.
(1)求表格中x與y的值;
(2)從被檢測的5輛B種型號的出租車中任取2輛,記“氮氧化物排放量超過80mg/km”的車輛數(shù)為X,求X=1時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x+2cos2x+m(0≤x≤ ).
(1)若函數(shù)f(x)的最大值為6,求常數(shù)m的值;
(2)若函數(shù)f(x)有兩個零點x1和x2 , 求m的取值范圍,并求x1和x2的值;
(3)在(1)的條件下,若g(x)=(t﹣1)f(x)﹣ (t≥2),討論函數(shù)g(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長軸長為6,且橢圓與圓 的公共弦長為.

(1)求橢圓的方程.

(2)過點作斜率為的直線與橢圓交于兩點, ,試判斷在軸上是否存在點,使得為以為底邊的等腰三角形.若存在,求出點的橫坐標的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級學(xué)生中隨機抽取部分學(xué)生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖.已知高一年級共有學(xué)生600名,據(jù)此估計,該模塊測試成績不少于60分的學(xué)生人數(shù)為(

A.588
B.480
C.450
D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式x2+2ax+1≥0對于一切x∈(0, ]成立,則a的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,空間四邊形ABCD中,AB=CD,AB⊥CD,E、F分別為BC、AD的中點,則EF和AB所成的角為

查看答案和解析>>

同步練習(xí)冊答案