已知x,y滿足約束條件
x-y+6≥0
x+y≥0
x≤3
,
(1)求z=2x-y的最小值;
(2)求z=
x2+y2+4x+2y+5
的最小值和最大值;
(3)求z=
x+y-5
x-4
的取值范.
分析:(1)畫出約束條件
x-y+6≥0
x+y≥0
x≤3
,表示的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求目標(biāo)函數(shù)z=2x-y的最小值.
(2)利用幾何意義求出可行域內(nèi)的點(diǎn)到(-2,-1)的距離即可.
(3)化簡表達(dá)式,利用幾何意義直線的斜率求解即可.
解答:解:(1)由z=2x-y,得y=2x-z,作出約束條件
x-y+6≥0
x+y≥0
x≤3
對應(yīng)的可行域(陰影部分),
平移直線y=2x-z,由平移可知當(dāng)直線y=2x-z,
經(jīng)過點(diǎn)C時(shí),直線y=2x-z的截距最大,此時(shí)z取得最小值,
x-y+6=0
x+y=0
,解得
x=-3
y=3
,即C(-3,3).
將C(-3,3)的坐標(biāo)代入z=2x-y,得z=-6-3=-9,
即目標(biāo)函數(shù)z=2x-y的最小值為-9.
(2)z=
x2+y2+4x+2y+5
=
(x+2)2+(y+1)2
,所求最值就是可行域內(nèi)的點(diǎn)到(-2,-1)的距離的最小值和最大值.
點(diǎn)M到直線x+y=0的距離:
|-2-1|
2
=
3
2
2
.所以最小值為:
3
2
2

最大值為:MA的距離:
(3+2)2+(9+1)2
=5
5
精英家教網(wǎng)
(3)z=
x+y-5
x-4
=1+
y-1
x-4
,所求z的取值范圍.就是P與可行域內(nèi)的點(diǎn)連線的斜率加1的范圍,
KPN=
1+3
4-3
=4.KPA=
9-1
3-4
=-8,
∴z的范圍是:[-7,5].
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y 滿足約束條
x-2y≤24
3x+2y≥36
y≥1
則z=2x-3y的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(a,b)作兩條直線l1,l2,斜率分別為1,-1,已知l1與圓O1:(x+2)2+(y-2)2=2交于不同的兩點(diǎn)A,B,l2與圓O2:(x-3)2+(y-4)2=2交于不同的兩點(diǎn)C,D,且|AB|=|CD|.
(Ⅰ)求:a,b所滿足的約束條件;
(Ⅱ)求:
a2-b2a2+b2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二文科數(shù)學(xué)競賽試卷(解析版) 題型:選擇題

已知向量,且,若變量x,y滿足約束條,則z的最大值為                            

A.1             B.2         C.3            D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年河北省唐山市高二(上)第一次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:填空題

已知x,y 滿足約束條則z=2x-3y的最大值   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條的最小值是                                 

A.9                            B.20                          C.                        D.

查看答案和解析>>

同步練習(xí)冊答案