【題目】已知數(shù)列滿足對任意的都有,且

(1)求數(shù)列的通項公式;

(2)設數(shù)列的前項和為,不等式對任意的正整數(shù)恒成立,求實數(shù)的取值范圍.

【答案】(1)(2)

【解析】試題分析:

1)當n=1,n=2時,直接代入條件,可求得;

2)遞推一項,然后做差得,所以;由于,即當時都有,所以數(shù)列是首項為1,公差為1的等差數(shù)列,故求得數(shù)列的通項公式;

3)由(2)知,則,利用裂項相消法得,根據(jù)單調遞增得,要使不等式對任意正整數(shù)n恒成立,只要,即可求得實數(shù)a的取值范圍.

試題解析:

1)解:當時,有,

由于,所以

時,有,

代入上式,由于,所以

2)解:由于,

則有

,得,

由于,所以

同樣有,

,得

所以

由于,即當時都有,

所以數(shù)列是首項為1,公差為1的等差數(shù)列.

3)解:由(2)知,則,所以

,數(shù)列單調遞增 .

.

要使不等式對任意正整數(shù)n恒成立,只要

.

,即.

所以,實數(shù)a的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中點.

1求證:平面AB1E平面B1BCC1;

2求證:平面AB1E.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產品成功的概率分別為 .現(xiàn)安排甲組研發(fā)新產品A,乙組研發(fā)新產品B,設甲、乙兩組的研發(fā)相互獨立. (Ⅰ)求至少有一種新產品研發(fā)成功的概率;
(Ⅱ)若新產品A研發(fā)成功,預計企業(yè)可獲利潤120萬元;若新產品B研發(fā)成功,預計企業(yè)可獲利潤100萬元,求該企業(yè)可獲利潤的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的偶函數(shù)滿足,且當時, ,若在內關于的方程恰有3個不同的實數(shù)根,則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=6cos2 + sinωx﹣3(ω>0)在一個周期內的圖象如圖所示,A為圖象的最高點,B、C為圖象與x軸的交點,且△ABC為正三角形.

(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ , ),求f(x0+1)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上不單調,求的取值范圍.

(2)令,是否存在實數(shù),對任意,存在,使得成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中常數(shù).

(1)當時,求函數(shù)的單調遞增區(qū)間;

(2)當時,若函數(shù)有三個不同的零點,求的取值范圍;

(3)設定義在上的函數(shù)在點處的切線方程為,當時,若內恒成立,則稱為函數(shù)的“類對稱點”,請你探究當時,函數(shù)是否存在“類對稱點”,若存在,請最少求出一個“類對稱點” 的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子里有編號為的五個球,某位教師從袋中任取兩個不同的球. 教師把所取兩球編號的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個球的編號.

甲說:我無法確定.”

乙說:我也無法確定.”

甲聽完乙的回答以后,甲又說:我可以確定了.”

根據(jù)以上信息, 你可以推斷出抽取的兩球中

A. 一定有3號球 B. 一定沒有3號球 C. 可能有5號球 D. 可能有6號球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中實數(shù)為常數(shù),為自然對數(shù)的底數(shù).

(1)當時,求函數(shù)的單調區(qū)間;

(2)當時,解關于的不等式

(3)當時,如果函數(shù)不存在極值點,求的取值范圍.

查看答案和解析>>

同步練習冊答案