【題目】在平面直角坐標系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(-4,0)、B(4,0)
(1)若A、B為橢圓的焦點,且橢圓經(jīng)過C、D兩點,求該橢圓的方程;
(2)若A、B為雙曲線的焦點,且雙曲線經(jīng)過C、D兩點,求雙曲線的方程;
【答案】(1)(2)
【解析】
試題分析:(1)由橢圓的定義:丨CA丨+丨CB丨=16=2a,求得a=8,則=64-16=48,即可求得橢圓方程;(2)根據(jù)雙曲線的定義:丨CA丨-丨CB丨=4=2a′,則求得a′=2,則=16-4=12,即可求得雙曲線的標準方程
試題解析:由題意: , AC=10……………2分
(1)∵A、B為橢圓的焦點,且橢圓經(jīng)過C、D兩點
根據(jù)橢圓的定義: ∴ …………4分
在橢圓中: …………6分
∴所求橢圓方程為: …………8分
(2)∵A、B為雙曲線的焦點,且雙曲線經(jīng)過C、D兩點
根據(jù)雙曲線的定義: ∴ …………10分
在雙曲線中: …………12分
∴所求雙曲線方程為: …………14分
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)若是函數(shù)的極值點,求實數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個長方體的平面展開圖及該長方體的直觀圖的示意圖如圖所示.
(1)請將字母標記在長方體相應的頂點處(不需說明理由);
(2)在長方體中,判斷直線與平面的位置關系,并證明你的結論;
(3)在長方體中,設的中點為,且,,求證:
平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1是四棱錐的直觀圖,其正(主)視圖和側(左)視圖均為直角三角形,俯視圖外框為矩形,相關數(shù)據(jù)如圖2所示.
(1)設中點為,在直線上找一點,使得平面,并說明理由;
(2)若二面角的平面角的余弦值為,求四棱錐的外接球的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心在軸正半軸上的圓與直線相切,與軸交于兩點,且.
(1)求圓的標準方程;
(2)過點的直線與圓交于不同的兩點,若設點為的重心,當的面積為時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直角三角形的頂點坐標,直角頂點,頂點在軸上,點為線段的中點,三角形外接圓的圓心為.
(1)求邊所在直線方程;
(2)求圓的方程;
(3)直線過點且傾斜角為,求該直線被圓截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個,生產(chǎn)一個衛(wèi)兵需5分鐘,生產(chǎn)一個騎兵需7分鐘,生產(chǎn)一個傘兵需4分鐘,已知總生產(chǎn)時間不超過10小時.若生產(chǎn)一個衛(wèi)兵可獲利潤5元,生產(chǎn)一個騎兵可獲利潤6元,生產(chǎn)一個傘兵可獲利潤3元.
(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)x與騎兵個數(shù)y表示每天的利潤W(元);
(2)怎樣分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)記,求證:函數(shù)在區(qū)間內(nèi)有且僅有一個零點;
(2)用表示中的最小值,設函數(shù),若關于的方程(其中為常數(shù))在區(qū)間有兩個不相等的實根,記在內(nèi)的零點為,試證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com