【題目】已知向量,,,函數(shù).
(1)求函數(shù)的對稱中心;
(2)設銳角三個內角所對的邊分別為,若求和c
【答案】(1);(2),.
【解析】
(1)利用平面向量數(shù)量積的運算,三角函數(shù)恒等變換的應用化簡函數(shù)解析式可得f(x),利用三角函數(shù)的對稱中心即可得解.(2)由(1)知可得,結合A的范圍可求,解法一:由余弦定理解得c的值,解法二:由正弦定理解得sinB,由B是銳角,可求cosB,利用三角形內角和定理,兩角和的正弦函數(shù)公式可求sinC,根據(jù)正弦定理即可解得c的值.
,
令,解x=故對稱中心為.
(2).
∵,∴,
∴,∴.
方法一 由余弦定理得,
解得或.
若,則,
∴為鈍角,這與為銳角三角形不符,故.
∴.
方法二 由正弦定理得,解得.
∵是銳角,∴,
∵,
∴,
由正弦定理得,解得.
科目:高中數(shù)學 來源: 題型:
【題目】某服務電話,打進的電話響第1聲時被接的概率是0.1;響第2聲時被接的概率是0.2;響第3聲時被接的概率是0.3;響第4聲時被接的概率是0.35.
(1)打進的電話在響5聲之前被接的概率是多少?
(2)打進的電話響4聲而不被接的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),,,記.
(1)求曲線在處的切線方程;
(2)求函數(shù)的單調區(qū)間;
(3)當時,若函數(shù)沒有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 與雙曲線 的離心率相同,且雙曲線C2的左、右焦點分別為F1 , F2 , M是雙曲線C2一條漸近線上的某一點,且OM⊥MF2 , ,則雙曲線C2的實軸長為( )
A.4
B.
C.8
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心在x軸正半軸上的圓C與直線相切,與y軸交于M,N兩點,且.
Ⅰ求圓C的標準方程;
Ⅱ過點的直線l與圓C交于不同的兩點D,E,若時,求直線l的方程;
Ⅲ已知Q是圓C上任意一點,問:在x軸上是否存在兩定點A,B,使得?若存在,求出A,B兩點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個港口,相鄰兩次高潮發(fā)生時間相距,低潮時水的深度為,高潮時為,一次高潮發(fā)生在10月10日4:00,每天漲潮落潮時,水的深度與時間近似滿足關系式.
(1)若從10月10日0:00開始計算時間,選用一個三角函數(shù)來近似描述該港口的水深和時間之間的函數(shù)關系.
(2)10月10日17:00該港口水深約為多少?(精確到)
(3)10月10日這一天該港口共有多長時間水深低于?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產品的質量以其質量指標值衡量,并依據(jù)質量指標值劃分等極如下表:
質量指標值m | m<185 | 185≤m<205 | m≥205 |
等級 | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:
(Ⅰ)根據(jù)以上抽樣調查數(shù)據(jù),能否認為該企業(yè)生產的這種產品符合“一、二等品至少要占全部產品90%”的規(guī)定?
(Ⅱ)在樣本中,按產品等極用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;
(III)該企業(yè)為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值X近似滿足X~N(218,140}),則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為落實國家“精準扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2017年在其扶貧基地投入100萬元研發(fā)資金,用于蔬菜的種植及開發(fā),并計劃今后十年內在此基礎上,每年投入的資金比上一年增長.
(1)寫出第年(2018年為第一年)該企業(yè)投入的資金數(shù)(萬元)與的函數(shù)關系式,并指出函數(shù)的定義域
(2)該企業(yè)從第幾年開始(2018年為第一年),每年投入的資金數(shù)將超過200萬元?(參考數(shù)據(jù),)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com