若實數(shù)ab滿足,實數(shù)m、n滿足4m3n12=0,則最小值為

[  ]

A

B

C

D0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是直線l上的不同的三點,O是直線外一點,向量
OA
,
OB
,
OC
滿足
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
,記y=f(x).
(1)求函數(shù)y=f(x)的解析式;
(2)若關(guān)于x的方程f(x)=2x+b在[0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是直線l上不同的三點,O是l外一點,向量
OA
OB
,
OC
滿足:
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
.記y=f(x).
(Ⅰ)求函數(shù)y=f(x)的解析式:
(Ⅱ)若對任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f'(x)-3x]>0恒成立,求實數(shù)a的取值范圍:
(Ⅲ)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•金山區(qū)一模)(1)已知平面上兩定點A(-2,0)、B(2,0),且動點M的坐標(biāo)滿足
MA
MB
=0,求動點M的軌跡方程;
(2)若把(1)的M的軌跡圖象向右平移一個單位,再向下平移一個單位,恰與直線x+ky-3=0 相切,試求實數(shù)k的值;
(3)如圖1,l是經(jīng)過橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
長軸頂點A且與長軸垂直的直線,E、F是兩個焦點,點P∈l,P不與A重合.若∠EPF=α,證明:0<α≤arctan
c
b
.類比此結(jié)論到雙曲線
x2
a2
-
y2
b2
=1
,l是經(jīng)過焦點F且與實軸垂直的直線,A、B是兩個頂點,點P∈l,P不與F重合(如圖2).若∠APB=α,試求角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蘭州模擬)已知函數(shù)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f'(x)滿足f'(1)=2a-6,f′(2)=-b-18,其中常數(shù)a,b∈R.
(1)判斷函數(shù)f(x)的單調(diào)性并指出相應(yīng)的單調(diào)區(qū)間;
(2)若方程f(x)=k有三個不相等的實根,且函數(shù)g(x)=x2-2kx+1在[-1,2]上的最小值為-23,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省上饒市等高一四校聯(lián)考數(shù)學(xué)試卷 題型:選擇題

下列結(jié)論中,正確的是

A.若實數(shù)A是a與b的等差中項,則必有;

B.若實數(shù)a,G,b滿足,則G必是a與b的等比中項;

C.若數(shù)列是常數(shù)數(shù)列 a,a,a,·····,則既是等差數(shù)列,又是等比數(shù)列;

D.若等差數(shù)列的前項和(a,b,c為實常數(shù)),則必有:c=0.

 

查看答案和解析>>

同步練習(xí)冊答案