【題目】已知函數(shù)的圖象所過的定點(diǎn)為,光線沿直線射入,遇直線后反射,且反射光線所在的直線經(jīng)過點(diǎn),求的值和的方程.

【答案】

【解析】

函數(shù)y=1+logax+6)(a0,a≠1),令x+6=1,解得x=-5.可得定點(diǎn)M-5,1).聯(lián)立,解得直線l1l2的交點(diǎn).設(shè)點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)設(shè)M0x0,y0),可得,解得交點(diǎn).可得直線l1的斜率k1.解得m即可得出.

函數(shù)y=1+logax+6)(a0,a≠1),令x+6=1,解得x=-5.∴定點(diǎn)M-5,1).

聯(lián)立,解得,

∴直線l1l2的交點(diǎn)為

設(shè)點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)設(shè)M0x0y0),

,解得,即(-1-m,5-m).

∴直線l1的斜率k1==2,解得m=-5

此時(shí)l2的方程為:x-2y+7=0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理是合情推理的是(  )

①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是 歸納出所有三角形的內(nèi)角和都是;③由,滿足,,推出是奇函數(shù);④三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得凸多邊形內(nèi)角和是.

A. ①②B. ①③④C. ①②④D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

(1)函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;

(2)函數(shù)在區(qū)間內(nèi)是增函數(shù);

(3)函數(shù)是偶函數(shù);

(4)存在實(shí)數(shù),使;

(5)如果函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱,那么的最小值為.

其中正確的命題的序號(hào)是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓

(Ⅰ)求橢圓的方程與離心率;

(Ⅱ)設(shè)橢圓上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)對(duì)稱,直線, 分別交軸于 兩點(diǎn)求證:以為直徑的圓被軸截得的弦長(zhǎng)是定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳組的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

1)補(bǔ)全頻率分布直方圖,并求,的值;

2)求年齡段人數(shù)的中位數(shù)和眾數(shù);

3)從歲年齡段的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動(dòng),其中選取3人作為領(lǐng)隊(duì),求選取的3名領(lǐng)隊(duì)中年齡都在歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 (n≥2)個(gè)實(shí)數(shù)組成的n行n列的數(shù)表中, 表示第i行第j列的數(shù),記 -1,0,1} (),且r1,r2,…,rn,c1,c2,..,cn,兩兩不等,則稱此表為“n階H表”,記

H={ r1,r2,…,rn,c1,c2,..,cn}.

(I)請(qǐng)寫出一個(gè)“2階H表”;

(II)對(duì)任意一個(gè)“n階H表”,若整數(shù),且,求證: 為偶數(shù);

(Ⅲ)求證:不存在“5階H表”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護(hù)問題仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)求出的值;

(2)求這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位);

(3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,求這2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,E是PC的中點(diǎn),底面ABCD為矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點(diǎn)F.

(1)求證:EF∥平面PAB;

(2)若PB與平面ABCD所成角的正弦值為,求二面角P-AE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)中學(xué)生實(shí)踐、創(chuàng)新和團(tuán)隊(duì)建設(shè)能力的培養(yǎng),促進(jìn)教育教學(xué)改革,市教育局舉辦了全市中學(xué)生創(chuàng)新知識(shí)競(jìng)賽,某中學(xué)舉行了選拔賽,共有150名學(xué)生參加,為了了解成績(jī)情況,從中抽取50名學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),請(qǐng)你根據(jù)尚未完成的頻率分布表,解答下列問題:

(1)完成頻率分布表(直接寫出結(jié)果);

(2)若成績(jī)?cè)?0.5分以上的學(xué)生獲一等獎(jiǎng),試估計(jì)全校獲一等獎(jiǎng)的人數(shù),現(xiàn)在從全校所有獲一等獎(jiǎng)的同學(xué)中隨機(jī)抽取2名同學(xué)代表學(xué)校參加競(jìng)賽,某班共有2名同學(xué)榮獲一等獎(jiǎng),求該班同學(xué)恰有1人參加競(jìng)賽的概率.

分組

頻數(shù)

頻率

第1組

[60.5,70.5)

0.26

第2組

[70.5,80.5)

17

第3組

[80.5,90.5)

18

0.36

第4組

[90.5,100.5]

合計(jì)

50

1

查看答案和解析>>

同步練習(xí)冊(cè)答案