【題目】在△ABC中,D、E是BC邊上兩點(diǎn),BD、BA、BC構(gòu)成以2為公比的等比數(shù)列,BD=6,∠AEB=2∠BAD,AE=9,則三角形ADE的面積為(
A.31.2
B.32.4
C.33.6
D.34.8

【答案】B
【解析】解:由題意可得:BD=6,AB=12,AE=9,設(shè)∠BAD=α,則∠AEB=2α, ∵在△ABE中,由正弦定理可得: ,可得:sinB= sin2α,
在△ABD中,由正弦定理可得: ,可得:AD= =9cosα,
∴由余弦定理可得:62=122+(9cosα)2﹣2×12×(9cosα)×cosα,
整理可得:cosα=
∴sinα= ,sin2α= ,cos2α= ,AD= ,
則在△ADE中,由余弦定理可得:( 2=DE2+92﹣2×9×DE× ,整理可得:5DE2﹣54DE+81=0,
∴解得:DE=9,或1.8(舍去),
∴SADE= AEDEsin2α= ×9×9× =32.4.
故選:B.
【考點(diǎn)精析】本題主要考查了正弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面,且,若、分別為、的中點(diǎn).

(1)求證:∥平面

(2)求證:平面平面.

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線與雙曲線的漸近線交于兩點(diǎn),設(shè)為雙曲線上任一點(diǎn),若為坐標(biāo)原點(diǎn)),則下列不等式恒成立的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是橢圓的短軸位于軸下方的端點(diǎn),過作斜率為1的直線交橢圓于點(diǎn),點(diǎn)軸上,且軸,

1)若點(diǎn)的坐標(biāo)為,求橢圓的方程;

2)若點(diǎn)的坐標(biāo)為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從裝有 2個(gè)紅球和 2個(gè)白球的口袋中任取 2個(gè)球,則下列每對(duì)事件中,互斥事件的對(duì)數(shù)是( )對(duì)

(1)“至少有 1個(gè)白球”與“都是白球” (2)“至少有 1個(gè)白球”與“至少有 1個(gè)紅球”

(3)“至少有 1個(gè)白球”與“恰有 2個(gè)白球” (4)“至少有 1個(gè)白球”與“都是紅球”

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差d>0,前n項(xiàng)和為Sn , 已知3 是﹣a2與a9的等比中項(xiàng),S10=﹣20.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn(n≥6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一動(dòng)圓與圓外切,與圓內(nèi)切.

(1)求動(dòng)圓圓心的軌跡的方程.

(2)設(shè)過圓心的直線與軌跡相交于兩點(diǎn),為圓的圓心)的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及直線的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,,設(shè)

1)求;

2)判斷數(shù)列是否為等比數(shù)列,并說明理由;

3)求的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案