給定圓:及拋物線:,過圓心作直線,此直線與上述兩曲線的四個交點,自上而下順次記為,如果線段的長按此順序構成一個等差數(shù)列,求直線的方程.

.

解析試題分析:本題考查圓、直線、拋物線相交的問題,考查學生分析問題解決問題的能力.先將圓的直徑求出來,再設出直線方程,方程中的中有一個參數(shù),本題的關鍵是解出的值,將直線方程代入拋物線方程中,消去,求的長,再利用等差中項列出線段的關系,進而求出的長,與上面的聯(lián)立就可求出.
試題解析:圓的方程為,則其直徑長,圓心為,設的方程為,即,代入拋物線方程得:,設,有
.
 ,
因此.     8分
據(jù)等差,
所以,即,,   14分
即:方程為.     16分
考點:1.等差數(shù)列中等差中項的概念;2.圓的半徑;3.直線與拋物線的交點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心為直角坐標系xOy的原點,焦點在s軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的點,=λ,求點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

拋物線M: 的準線過橢圓N: 的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.

(1)求拋物線M的方程.
(2)設點A的橫坐標為x1,點C的橫坐標為x2,曲線M上點D的橫坐標為x1+2,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,動點到兩點的距離之和等于,設點的軌跡為曲線,直線過點且與曲線交于,兩點.
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△的面積;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的長軸長為4,且過點
(1)求橢圓的方程;
(2)設、是橢圓上的三點,若,點為線段的中點,兩點的坐標分別為、,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為,過任作直線(軸不平行)交拋物線分別于兩點,點關于軸對稱點為

(1)求證:直線軸交點必為定點;
(2)過分別作拋物線的切線,兩條切線交于,求的最小值,并求當取最小值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,焦點在軸上,且過點.

(1)求拋物線的標準方程;
(2)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

拋物線與直線相切,是拋物線上兩個動點,為拋物線的焦點,的垂直平分線軸交于點,且.
(1)求的值;
(2)求點的坐標;
(3)求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動點與定點的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設直線與曲線交于兩點,點關于軸的對稱點為,試問:當變化時,直線軸是否交于一個定點?若是,請寫出定點的坐標,并證明你的結論;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案