給定圓:及拋物線:,過圓心作直線,此直線與上述兩曲線的四個交點,自上而下順次記為,如果線段的長按此順序構成一個等差數(shù)列,求直線的方程.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的中心為直角坐標系xOy的原點,焦點在s軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的點,=λ,求點M的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
拋物線M: 的準線過橢圓N: 的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.
(1)求拋物線M的方程.
(2)設點A的橫坐標為x1,點C的橫坐標為x2,曲線M上點D的橫坐標為x1+2,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,動點到兩點,的距離之和等于,設點的軌跡為曲線,直線過點且與曲線交于,兩點.
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線的焦點為,過任作直線(與軸不平行)交拋物線分別于兩點,點關于軸對稱點為,
(1)求證:直線與軸交點必為定點;
(2)過分別作拋物線的切線,兩條切線交于,求的最小值,并求當取最小值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在軸上,且過點.
(1)求拋物線的標準方程;
(2)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
拋物線與直線相切,是拋物線上兩個動點,為拋物線的焦點,的垂直平分線與軸交于點,且.
(1)求的值;
(2)求點的坐標;
(3)求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知動點與定點的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設直線與曲線交于兩點,點關于軸的對稱點為,試問:當變化時,直線與軸是否交于一個定點?若是,請寫出定點的坐標,并證明你的結論;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com