(本小題滿分14分)
已知雙曲線
:
和圓
:
(其中原點(diǎn)
為圓心),過雙曲線
上一點(diǎn)
引圓
的兩條切線,切點(diǎn)分別為
、
.
(1)若雙曲線
上存在點(diǎn)
,使得
,求雙曲線離心率
的取值范圍;
(2)求直線
的方程;
(3)求三角形
面積的最大值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,點(diǎn)
是橢圓
上一動(dòng)點(diǎn),點(diǎn)
是點(diǎn)
在
軸上的射影,坐標(biāo)平面
內(nèi)動(dòng)點(diǎn)
滿足:
(
為坐標(biāo)原點(diǎn)),設(shè)動(dòng)點(diǎn)
的軌跡為曲線
.
(Ⅰ)求曲線
的方程并畫出草圖;
(Ⅱ)過右焦點(diǎn)
的直線
交曲線
于
,
兩點(diǎn),且
,點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.如圖,在平面直角坐標(biāo)系
中,
,
,
,
,設(shè)
的外接圓圓心為E.
(1)若⊙E與直線CD相切,求實(shí)數(shù)a的值;
(2)設(shè)點(diǎn)
在圓
上,使
的面積等于12的點(diǎn)
有且只有三個(gè),試問這樣的⊙E是否存在,若存在,求出⊙E的標(biāo)準(zhǔn)方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
的右頂點(diǎn)為
,點(diǎn)
在橢圓上,且它的橫坐標(biāo)為1,點(diǎn)
,且
.
⑴求橢圓的方程;⑵若過點(diǎn)
的直線
與橢圓交于另一點(diǎn)
,若線段
的垂直平分線經(jīng)過點(diǎn)
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
在平面直角坐標(biāo)系
中,已知?jiǎng)狱c(diǎn)
到點(diǎn)
的距離為
,到
軸的距離為
,且
.
(I)求點(diǎn)
的軌跡
的方程;
(Ⅱ)若
、
是(I)中
上的兩點(diǎn),
,過
、
分別作直線
的垂線,垂足分別為
、
.證明:直線
過定點(diǎn)
,且
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題12分)
已知雙曲線的中心在原點(diǎn),左右焦點(diǎn)分別為
,離心率為
,且過點(diǎn)
,
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)若直線系
(其中
為參數(shù))所過的定點(diǎn)
恰在雙曲線上,求證:
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知命題
:“橢圓
的焦點(diǎn)在x軸上” ,命題
:只有一個(gè)實(shí)數(shù)
滿足不等式
. 若命題“p且q”是真命題,求實(shí)數(shù)a的值
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
P(x,y)是曲線
上任意一點(diǎn),則(x-2)2+(x+4)2的最大值是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(1)點(diǎn)M到點(diǎn)F(2,0)的距離比它到直線
的距離小1,求點(diǎn)M滿足的方程。
(2)曲線上點(diǎn)M(x,y)到定點(diǎn)F(2,0)的距離和它到定直線x=8的距離比是常數(shù)2,求曲線方程。
查看答案和解析>>