精英家教網 > 高中數學 > 題目詳情

已知平面α⊥平面β,下面又四個命題:
①一定存在直線l,使得l⊥α,l⊥β;  ②一定存在平面γ,使得γ∥α,γ∥β
③一定存在平面γ,使得γ⊥α,γ⊥β;、芤欢ù嬖谥本l,使得l⊥α,l∥β
其中正確命題的序號是


  1. A.
    ①②
  2. B.
    ②③
  3. C.
  4. D.
    ③④
D
分析:由已知中平面α⊥平面β,令l⊥α,根據線面垂直及面面垂直的位置關系及幾何特征,可判斷①④的真假;根據面面平行的判定方法,可判斷②的真假;根據線面垂直及面面垂直的幾何特征,可判斷③的真假,進而得到答案.
解答:∵平面α⊥平面β,
∴l(xiāng)⊥α時,l∥β或l?β,故①錯誤,④正確;
若γ∥α,γ∥β,則α∥β,這與平面α⊥平面β矛盾,故②錯誤;
若α∩β=a,當a⊥γ時,γ⊥α,γ⊥β,故③正確;
故選D
點評:本題考查的知識點是命題的真假判斷與應用,平面與平面之間的位置關系,熟練掌握空間線面關系的判定,性質,定義及幾何特征是解答此類問題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

16、如圖:已知平面α∥平面β,點A、B在平面α內,點C、D在β內,直線AB與CD是異面直線,點E、F、G、H分別是線段AC、BC、BD、AD的中點,求證:
(Ⅰ)E、F、G、H四點共面;
(Ⅱ)平面EFGH∥平面β.

查看答案和解析>>

科目:高中數學 來源: 題型:

設V是已知平面M上所有向量的集合,對于映射f:V→V,a∈V,記a的象為f(a).若映射f:V→V滿足:對所有a、b∈V及任意實數λ,μ都有f(λa+μb)=λf(a)+μf(b),則f稱為平面M上的線性變換.下列命題中假命題是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個命題
①過平面外一定點有且只有一個平面與已知平面垂直;
②過空間一定點有且只有一條直線與已知平面垂直;
③過平面外一定直線有且只有一個平面與已知平面垂直;
④垂直于同一平面的兩個平面可能互相平行,也可能相交;
⑤垂直于同一條直線的兩個平面平行;
⑥平行于同一個平面的兩直線不是平行就是相交.
其中正確命題的序號為
②④⑤
②④⑤

查看答案和解析>>

科目:高中數學 來源:2013-2014學年湖南長沙重點中學高三上學期第四次月考文科數學試卷(解析版) 題型:選擇題

已知下列四個命題,其中真命題的序號是(    )

① 若一條直線垂直于一個平面內無數條直線,則這條直線與這個平面垂直;

② 若一條直線平行于一個平面,則垂直于這條直線的直線必垂直于這個平面;

③ 若一條直線平行一個平面,另一條直線垂直這個平面,則這兩條直線垂直;

④ 若兩條直線垂直,則過其中一條直線有唯一一個平面與另外一條直線垂直;

A.①②        B.②③         C.②④         D.③④

 

查看答案和解析>>

科目:高中數學 來源:2011---2012學年四川省高二10月考數學試卷 題型:解答題

如圖:已知平面//平面,點A、B在平面內,點C、D在內,直線AB與CD是異面直線,點E、F、G、H分別是線段AC、BC、BD、AD的中點,

求證:(Ⅰ)E、F、G、H四點共面;

(Ⅱ)平面EFGH//平面.

 

 

 

查看答案和解析>>

同步練習冊答案