已知變量x,y滿足約束條件
x-y≥0
x+y≥0
2x-y≤2
,則x2+(y-1)2的最小值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用兩點(diǎn)間的距離公式,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,
設(shè)z=x2+(y-1)2,則z的幾何意義是區(qū)域內(nèi)的點(diǎn)到定點(diǎn)C(0,1)的距離的平方,
由圖象知C到直線x-y=0的距離最小,
此時(shí)圓心到直線的距離d=
|0-1|
2
=
1
2
,
則z=d2=(
1
2
)2=
1
2
,
故x2+(y-1)2的最小值為
1
2
,
故答案為:
1
2
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用點(diǎn)到直線的距離公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)三棱柱,以這個(gè)三棱柱的一個(gè)底面為底面的三棱錐,頂點(diǎn)是這個(gè)三棱柱另一個(gè)底面三角形的頂點(diǎn),這樣的三棱錐一共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某程序框圖如圖所示,若該程序運(yùn)行后輸出的值是
7
4
,則(  )
A、a=3B、a=4
C、a=5D、a=6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不等式組
x-2y+2≥0
x≤4
y≥-2
表示的平面區(qū)域?yàn)镈,則區(qū)域D的面積為( 。
A、10B、15C、20D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x,y的不等式組
x≤0
x+2y≥0
kx-y+1≥0
,表示的平面區(qū)域是直角三角形區(qū)域,則正數(shù)k的值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a=3,b=2,C=
π
3
,求c和∠B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的參數(shù)方程為
x=2+
3
2
t
y=
1
2
t
(t為參數(shù))
,若以O(shè)為極點(diǎn),以x軸正半軸為極軸,曲線C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ

(1)求直線l的極坐標(biāo)方程及曲線C的參數(shù)方程;
(2)求曲線C上的點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
4
-
y2
12
=1的右焦點(diǎn)到拋物線y2=4x的準(zhǔn)線的距離為( 。
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(2x+1)是偶函數(shù),則函數(shù)y=f(x)的圖象的對(duì)稱軸方程是( 。
A、x=1B、x=-1
C、x=2D、x=-2

查看答案和解析>>

同步練習(xí)冊(cè)答案