(本題滿分12分) 設(shè)函數(shù).

(Ⅰ)判斷能否為函數(shù)的極值點(diǎn),并說明理由;

(Ⅱ)若存在,使得定義在上的函數(shù)處取得最大值,求實(shí)數(shù)的最大值.

 

【答案】

(Ⅰ)當(dāng)時(shí),的極小值點(diǎn);(Ⅱ) 

【解析】

試題分析:(Ⅰ),令,得;   2’

當(dāng)時(shí),,于是單調(diào)遞增,在單調(diào)遞減,

單調(diào)遞增.

故當(dāng)時(shí),的極小值點(diǎn)                  2’

(Ⅱ).

由題意,當(dāng)時(shí),恒成立              2’

易得,令,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013070412181371162922/SYS201307041219088575770880_DA.files/image016.png">必然在端點(diǎn)處取得最大值,即               4’

,即,解得,

所以的最大值為 2’

考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用

點(diǎn)評(píng):導(dǎo)數(shù)本身是個(gè)解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請(qǐng)注意歸納常規(guī)方法和常見注意點(diǎn),綜合考查運(yùn)用知識(shí)分析和解決問題的能力,中等題

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案