精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的焦距為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設為橢圓上一點,過點軸的垂線,垂足為.取點,連接,過點的垂線交軸于點.點是點關于軸的對稱點,作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點?并說明理由.

【答案】(1) .

(2) 直線與橢圓只有一個公共點;理由見解析.

【解析】1)因為橢圓過點

橢圓C的方程是

2

由題意,各點的坐標如上圖所示,

的直線方程:

化簡得

,

所以帶入

求得最后

所以直線與橢圓只有一個公共點.

第(1)題根據題意確定的大小,再將帶入方程,確定橢圓的方程;第(2)題是存在性問題,根據題意,設出,根據條件寫出的直線方程,并進行化簡,然而點坐標又在橢圓上,帶入方程,求出,即可判斷直線是否與橢圓C一定有唯一的公共點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校為創(chuàng)建“綠色校園”,在校園內種植樹木,有A、B、C三種樹木可供選擇,已知這三種樹木6年內的生長規(guī)律如下:

A樹木:種植前樹木高0.84米,第一年能長高0.1米,以后每年比上一年多長高0.2米;

B樹木:種植前樹木高0.84米,第一年能長高0.04米,以后每年生長的高度是上一年生長高度的2倍;

C樹木:樹木的高度(單位:米)與生長年限(單位:年,)滿足如下函數:表示種植前樹木的高度,取).

(1)若要求6年內樹木的高度超過5米,你會選擇哪種樹木?為什么?

(2)若選C樹木,從種植起的6年內,第幾年內生長最快?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數學40名數學教師,按年齡從小到大編號為1,2,…40。現從中任意選取6人分成兩組分配到A,B兩所學校從事支教工作,其中三名編號較小的教師在一組,三名編號較大的教師在另一組,那么編號為8,12,28的數學教師同時入選并被分配到同一所學校的方法種數是

A. 220 B. 440 C. 255 D. 510

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】微信紅包是一款年輕人非常喜歡的手機應用.某網絡運營商對甲、乙兩個品牌各種型號的手機在相同環(huán)境下搶到紅包的個數進行統(tǒng)計,得到如下數據:

品牌 型號

甲品牌(個)

4

3

8

6

12

乙品牌(個)

5

7

9

4

3

紅包個數

手機品牌

優(yōu)良

一般

合計

甲品牌(個)

乙品牌(個)

合計

(Ⅰ)如果搶到紅包個數超過個的手機型號為“優(yōu)良”,否則為“一般”,請完成上述表格,并據此判斷是否有的把握認為搶到紅包的個數與手機品牌有關?

(Ⅱ)不考慮其它因素,現要從甲、乙兩品牌的種型號中各選出種型號的手機進行促銷活動,求恰有一種型號是“優(yōu)良”,另一種型號是“一般”的概率;

參考公式:隨機變量的觀察值計算公式:,

其中.臨界值表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知極點與直角坐標系的原點重合,極軸與x軸的正半軸重合,圓C的極坐標方程是ρ=asinθ,直線l的參數方程是 (t為參數)
(1)若a=2,直線l與x軸的交點是M,N是圓C上一動點,求|MN|的最大值;
(2)直線l被圓C截得的弦長等于圓C的半徑的 倍,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為( 。
A.16
B.14
C.12
D.10

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,.

(1)當求函數的單調區(qū)間;

(2)當若函數在區(qū)間上的最小值是,的值;

(3)設,是函數圖象上任意不同的兩點,線段的中點為,直線的斜率為.證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,以原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線(為參數)與曲線相交于兩點.

(I)試寫出曲線的直角坐標方程和直線的普通方程;

(Ⅱ)求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(﹣1,0),B1,0),C01),直線yax+ba0)將ABC分割為面積相等的兩部分,則b的取值范圍是( 。

A.0,1B.C.D.

查看答案和解析>>

同步練習冊答案