【題目】如圖,底面為矩形的四棱錐,底面,,,是的中點.
(1)求四棱錐的體積;
(2)求與面所成角;
(3)在邊上是否存在一點,使得到平面的距離為?若存在,求出;若不存在,請說明理由.
【答案】(1);(2);(3)在邊上存在點,為中點,使得到平面的距離為;理由見解析.
【解析】
(1)根據(jù)棱錐體積公式直接求解即可得到結(jié)果;
(2)取中點,由三角形中位線的平行關(guān)系可得平面,知所求角為,利用長度關(guān)系求得的正切值,從而得到結(jié)果;
(3)假設(shè)存在點,作,由線面垂直的證明方法可證得平面,即;由面積橋可求得,利用勾股定理可說明為中點.
(1)
(2)取中點,連接
分別為中點 且
又平面 平面
與平面所成角即為
,即與平面所成角大小為
(3)假設(shè)邊上存在一點,使得到平面的距離為
作,垂足為
平面
又,平面, 平面
即為點到平面的距離
又
在邊上存在點,為中點,使得到平面的距離為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一次足球邀請賽共安排了支球隊參加,每支球隊預(yù)定的比賽場數(shù)分別是,,…,.若任兩支球隊之間至多安排了一場比賽,則稱是一個“有效安排”.證明:若是一個有效安排,且,則可去掉一支球隊,并重新調(diào)整各隊之間的對局情況,使也是一個有效安排.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點,當(dāng)直線與軸平行時,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點的定點,使得直線變化時,總有?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點與點在直線的兩側(cè),給出以下結(jié)論:①;②當(dāng)時,有最小值,無最大值;③;④當(dāng)且時,的取值范圍是,正確的個數(shù)為( )
A.1個B.2個C.3個D.以上都不對
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點,,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關(guān)數(shù)列的四個命題:
①數(shù)列是等比數(shù)列;
②數(shù)列是遞增數(shù)列;
③存在最小的正數(shù),使得對任意的正整數(shù) ,都有 ;
④存在最大的正數(shù),使得對任意的正整數(shù),都有.
其中真命題的序號是________________(請寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)是棱長為的正方體的一個頂點,過從此頂點出發(fā)的三條棱的中點作截面,對正方體的所有頂點都如此操作,所得的各截面與正方體各面共同圍成一個多面體,則關(guān)于此多面體有以下結(jié)論:①有個頂點;②有條棱;③有個面;④表面積為;⑤體積為.其中正確的結(jié)論是____________.(要求填上所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓P恒過定點,且與直線相切.
(Ⅰ)求動圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(為常數(shù),且).
(1)若當(dāng)時,函數(shù)與的圖象有且只要一個交點,試確定自然數(shù)的值,使得(參考數(shù)值,,,);
(2)當(dāng)時,證明:(其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘雅典學(xué)派算學(xué)家歐道克薩斯提出了“黃金分割”的理論,利用尺規(guī)作圖可畫出己知線段的黃金分割點,具體方法如下:(l)取線段AB=2,過點B作AB的垂線,并用圓規(guī)在垂線上截取BC=AB,連接AC;(2)以C為圓心,BC為半徑畫弧,交AC于點D;(3)以A為圓心,以AD為半徑畫弧,交AB于點E.則點E即為線段AB的黃金分割點.若在線段AB上隨機取一點F,則使得BE≤AF≤AE的概率約為( 。▍⒖紨(shù)據(jù):2.236)
A. 0.236B. 0.382C. 0.472D. 0.618
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com