【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右頂點分別是,為直線上一點(點在軸的上方),直線與橢圓的另一個交點為,直線與橢圓的另一個交點為.
(1)若的面積是的面積的,求直線的方程;
(2)設(shè)直線與直線的斜率分別為,求證:為定值;
(3)若的延長線交直線于點,求線段長度的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高一年級期末考試的學(xué)生中抽出40名學(xué)生,將其成績分成六段[40,50),[50,60)…[90,100]后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率;
(2)估計這次考試的平均分和中位數(shù)(精確到0.01);
(3)從成績是40~50分及90~100分的學(xué)生中選兩人,記他們的成績分別為,求滿足“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) ,記不超過x的最大整數(shù)為 ,令 ,則 , , ( )
A.是等差數(shù)列但不是等比數(shù)列
B.是等比數(shù)列但不是等差數(shù)列
C.既是等差數(shù)列又是等比數(shù)列
D.既不是等差數(shù)列也不是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:方程表示雙曲線,q:表示焦點在x軸上的橢圓.
(1)若“p且q”是真命題,求實數(shù)m的取值范圍;
(2)若“p且q”是假命題,“p或q”是真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項和,則使得Sn達到最大值的n是( )
A.21
B.20
C.19
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的定義域為,,使得不等式成立,關(guān)于的不等式的解集記為.
(1)若為真,求實數(shù)的取值集合;
(2)在(1)的條件下,若是的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)準(zhǔn)備在直角圍墻()內(nèi)建有一個矩形的少兒游樂場,分別在墻上,為了安全起見,過矩形的頂點建造一條如圖所示的圍欄,分別在墻上,其中,,.
(1)①設(shè),用表示圍欄的長度;
②設(shè),用表示圍欄的長度;
(2)在第一問中,選擇一種表示方法,求如何設(shè)計,使得圍欄的長度最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻的長度為x(單位:m),(1)將y表示為x的函數(shù)(2)試確定x , 使修建此矩形場地圍墻的總費用最小,并求出最小總費用
(1)將y表示為x的函數(shù):
(2)試確定x , 使修建此矩形場地圍墻的總費用最小,并求出最小總費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com