【題目】如圖,在平面直角坐標系xOy中,橢圓的右焦點、右頂點分別為F,A,過原點的直線與橢圓C交于點P、Q(點P在第一象限內(nèi)),連結(jié)PA,QF.若,的面積是面積的3倍.
(1)求橢圓C的標準方程;
(2)已知M為線段PA的中點,連結(jié)QA,QM.
①求證:Q,F,M三點共線;
②記直線QP,QM,QA的斜率分別為,,,若,求的面積.
【答案】(1)(2)①見解析②4
【解析】
(1)根據(jù)可得,又的面積是面積的3倍,所以,再聯(lián)立求解基本量即可.
(2) 設,再表示出,關(guān)于的表達式,化簡證明即可.
(3)由 可得,代入橢圓可得,進而求出
(1)設橢圓C的焦距為2c.
因為,所以.
設,則的面積為.
過原點的直線與橢圓C交于點P,Q,
所以,
故的面積為.
因為的面積是面積的3倍,
所以,
解得,,,
所以橢圓C的標準方程為.
(2)①因為,所以.
因為,
所以,,
故Q,F,M三點共線.
②因為,,,且,
所以
化簡得,
解得或(舍去),
代入中,得
因為點P在第一象限內(nèi),所以,故.
因為M為線段PA的中點,所以.
因為O為線段PQ的中點,
所以,
故.
科目:高中數(shù)學 來源: 題型:
【題目】冠狀病毒是目前已知RNA病毒中基因組最大的一個病毒家族,可引起人和動物的呼吸系統(tǒng)、消化系統(tǒng)、神經(jīng)系統(tǒng)等方面的嚴重疾病.自2019年底開始,一種新型冠狀病毒COVID-19開始肆虐全球.人感染了新型冠狀病毒后初期常見發(fā)熱乏力、咽痛干咳、鼻塞流涕、腹痛腹瀉等癥狀,嚴重者可致呼吸困難、臟器衰竭甚至死亡.篩查時可先通過血常規(guī)和肺部CT進行初步判斷,若血液中白細胞、淋巴細胞有明顯減少或肺部CT有可見明顯磨玻璃影等病毒性肺炎感染癥狀則為疑似病例,可再通過核酸檢測做最終判斷,現(xiàn)A、B、C、D、E五人均出現(xiàn)了發(fā)熱咳嗽等癥狀,且五人發(fā)病前14天因求學、出差、旅行、探親等原因均有疫區(qū)旅居史.經(jīng)過初次血液化驗已確定其中有且僅有一人罹患新冠肺炎,其余四人只是普通流感,但因化驗報告不慎遺失,現(xiàn)需要再次化驗以確定五人中唯一患者的姓名,下面是兩種化驗方案:
方案甲:逐個化驗,直到能確定患者為止;
方案乙:混合檢驗,先任取三人血樣混合在一起化驗,若混合血液化驗結(jié)果呈陽性則表明患者在這3人中,然后再逐個化驗,直到能確定患者為止;若混合血液化驗結(jié)果呈陰性,則在另外2人中任選一人進行化驗.假設在接受檢驗的血液樣本中每份樣本是陽性結(jié)果是等可能的,且每份樣本的檢驗結(jié)果是陽性還是陰性都是相互獨立的.
(1)求依方案甲所需化驗次數(shù)不少于依方案乙所需化驗次數(shù)的概率;
(2)求的期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù),,其中常數(shù).
(1)若函數(shù)與有相同的極值點,求的值;
(2)若,判斷函數(shù)與圖象的交點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在區(qū)間上的最值;
(2)若,且對任意恒成立,求的最大值(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿足,且是的等差中項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,對任意正數(shù)數(shù), 恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)對當?shù)氐哪撤N土特產(chǎn)的銷售量y(噸)和銷售單價x(元/千克)之間的關(guān)系進行了調(diào)查,得到下表中的數(shù)據(jù):
銷售單價x(元/千克) | 11 | 10.5 | 10 | 9.5 | 9 | 8 |
銷售量y(噸) | 5 | 6 | 8 | 10 | 11 | 14.1 |
(1)根據(jù)前5組數(shù)據(jù),求出y關(guān)于x的回歸直線方程.
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差不超過0.5,則認為回歸直線方程是理想的,試問(1)中得到的回歸直線方程是否理想?
(3)如果銷售量y(噸)和銷售單價x(元/千克)之間仍然服從(1)中的關(guān)系,進貨成本為2.5元/千克,且貨源充足(未售完的部分可按成本價全部售出),為了使利潤最大,請你就如何確定銷售單價給出合理建議.(每千克銷售單價不超過12元)
參考公式:回歸直線方程,其中.
參考數(shù)據(jù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com