已知函數(shù)為常數(shù),e是自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)時(shí),證明恒成立;
(Ⅱ)若,且對(duì)于任意恒成立,試確定實(shí)數(shù)的取值范圍.

(Ⅰ)確定函數(shù)有最小值,所以恒成立.
(Ⅱ)實(shí)數(shù)的取值范圍是

解析試題分析:(Ⅰ)由,所以
,故的單調(diào)遞增區(qū)間是
,故的單調(diào)遞減區(qū)間是
所以函數(shù)有最小值,所以恒成立.
(Ⅱ)由可知是偶函數(shù).
于是對(duì)任意成立等價(jià)于對(duì)任意成立.

①當(dāng)時(shí),
此時(shí)上單調(diào)遞增.
,符合題意.
②當(dāng)時(shí),
當(dāng)變化時(shí)的變化情況如下表:










單調(diào)遞減
極小值
單調(diào)遞增
由此可得,在上,
依題意,,又
綜合①,②得,實(shí)數(shù)的取值范圍是
考點(diǎn):本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值及不等式恒成立問題。
點(diǎn)評(píng):典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,通過研究函數(shù)的單調(diào)性,明確了極值情況。涉及不等式恒成立問題,轉(zhuǎn)化成了研究函數(shù)的單調(diào)性及最值,得到求證不等式。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求在點(diǎn)處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知處取得極值
(1)求
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,其中是自然常數(shù),
(1)討論時(shí), 的單調(diào)性、極值;
(2)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值。
(2)若關(guān)于的方程有三個(gè)不同實(shí)根,求實(shí)數(shù)的取值范圍;
(3)已知當(dāng)(1,+∞)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在上的函數(shù),其中為常數(shù).
(1)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)時(shí)都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間;
(2)若對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù),其中為常數(shù),且函數(shù)
的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行,求此時(shí)平行線的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),是否存在實(shí)數(shù),使函數(shù)在上遞減,在上遞增?若存在,求出所有值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案