證明:(1)任取兩個實數(shù)x
1,x
2,且x
1<x
2,
令x=x
1,x+y=x
2,則y=x
2-x
1>0
則f(x
2-x
1)>-1
由函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+1,
故f(x
2)=f(x
1)+f(x
2-x
1)+1>f(x
1),
故函數(shù)f(x)在R為增函數(shù)
解:(2)∵函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+1,
令x=y=
,可得f(1)=f(
)+f(
)+1=1+1+1=3
令x=1,y=1,可得f(2)=f(1)+f(1)+1=3+3+1=7
則不等式f(-x)+f(x
2-4)≥6可化為f(-x)+f(x
2-4)+1≥7
即f(x
2-x-4)≥6=f(2)
即x
2-x-4≥2,即x
2-x-6≥0
解得x≤-2,或x≥3
分析:(1)令x=x
1,x+y=x
2,則y=x
2-x
1>0,由函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+1,可得當(dāng)x
1<x
2時,f(x
2)>f(x
1),進(jìn)而根據(jù)函數(shù)單調(diào)性的定義得到結(jié)論;
(2)根據(jù)
及函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+1,求出f(1)=3,f(2)=7,結(jié)合函數(shù)的單調(diào)性進(jìn)而將原不等式化為x
2-x-4≥2,解答即可.
點評:本題考查的知識點是抽象函數(shù)單調(diào)性的判斷與證明,函數(shù)單調(diào)性的應(yīng)用,其中根據(jù)已知中抽象函數(shù)滿足的條件,利用“湊配法”確定函數(shù)的單調(diào)性及特殊函數(shù)值是解答本題的關(guān)鍵.