已知三角形ABC的三個頂點均在橢圓上,且點A是橢圓短軸的一個端點(點A在y軸正半軸上).

若三角形ABC的重心是橢圓的右焦點,試求直線BC的方程;若角A為,AD垂直BC于D,試求點D的軌跡方程.

所求點D的軌跡方程是


解析:

1)設B(,),C(,),BC中點為(),F(2,0)

則有

兩式作差有

  (1)

F(2,0)為三角形重心,所以由,得

代入(1)得

直線BC的方程為

2)由AB⊥AC得  (2)

設直線BC方程為,得

,

 代入(2)式得

,解得

直線過定點(0,,設D(x,y)

所以所求點D的軌跡方程是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三角形ABC的三個內角A,B,C成等差數(shù)列,且AB=1,BC=4,則中線AD的長為
A、
3
B、1
C、
2
D、
3
+
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角形△ABC的三個頂點是A(4,0),B(6,7),C(0,8).
(1)求BC邊上的高所在直線的方程;
(2)求BC邊上的中線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•湛江二模)已知三角形ABC的三個頂點的坐標分別為A(3,2),B(1,3),C(2,5),l為BC邊上的高所在直線.
(1)求直線l的方程;
(2)直線l與橢圓
x2
a2
+
y2
b2
=1
相交于D、E兩點,△CDE是以C(2,5)為直角頂點的等腰直角三角形,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角形ABC的三個內角A,B,C所對的邊長分別為a,b,c,且b2+c2-bc=a2;
c
b
=
1
2
+
3
.則tanB=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角形ABC的三個頂點是A(4,0),B(6,7),C(0,3),求:
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊的垂直平分線的方程.

查看答案和解析>>

同步練習冊答案