精英家教網 > 高中數學 > 題目詳情
(2013•湛江二模)已知三角形ABC的三個頂點的坐標分別為A(3,2),B(1,3),C(2,5),l為BC邊上的高所在直線.
(1)求直線l的方程;
(2)直線l與橢圓
x2
a2
+
y2
b2
=1
相交于D、E兩點,△CDE是以C(2,5)為直角頂點的等腰直角三角形,求該橢圓的方程.
分析:(1)利用相互垂直的直線的斜率之間的關系即可得到kl,再利用點斜式即可得出;
(2)利用等腰三角形的性質可得底邊DE的中點F的坐標,下面轉化為中點弦的問題,把直線l的方程與橢圓的方程聯(lián)立及利用根與系數的關系即可得出.
解答:解:(1)kBC=2,因為l為BC邊上的高所在直線,∴l(xiāng)⊥BC,∴kl•kBC=-1,解得kl=-
1
2

直線l的方程為:y-2=-
1
2
(x-3),即:x+2y-7=0
(2)過C作CF⊥DE,依題意,知F為DE中點,直線CF可求得為:2x-y+1=0.
聯(lián)立兩直線方程可求得:F(1,3),
由橢圓方程與直線ED聯(lián)立方程組,
可得:(a2+4b2)y2-28b2y+49b2-a2b2=0y1+y2=
28b2
a2+4b2
=6
,化為b2=
3
2
a2
,
又CF=
5
,所以,|DE|=2
5
(x2-x1)2+(y2-y1)2
=2
5
,即
5(y2-y1)2
=2
5
,
所以,(y2+y1)2-4y1y2=4,即36-4
49b2-a2b2
a2+4b2
=4,解得:a2=
35
3
,b2=
35
2
,
所以,所求方程為:
x2
35
3
+
y2
35
2
=1
點評:本題綜合考查了直線與橢圓相交問題轉化為方程聯(lián)立得到根與系數的關系、等腰三角形的性質、中點問題、相互垂直的直線斜率之間的關系等基礎知識與基本技能,考查了推理能力和計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•湛江二模)如圖,已知平面上直線l1∥l2,A、B分別是l1、l2上的動點,C是l1,l2之間一定點,C到l1的距離CM=1,C到l2的距離CN=
3
,△ABC內角A、B、C所對 邊分別為a、b、c,a>b,且bcosB=acosA
(1)判斷三角形△ABC的形狀;
(2)記∠ACM=θ,f(θ)=
1
AC
+
1
BC
,求f(θ)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湛江二模)(坐標系與參數方程選做題)
在直角坐標系xoy中,曲線C的參數方程是
x=2+2cosθ
y=2sinθ
(θ∈[0,2π],θ為參數),若以O為極點,x軸正半軸為極軸,則曲線C的極坐標方程是
ρ=4cosθ
ρ=4cosθ

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湛江二模)已知f(x)=
2x,x≤0
log3x,x>0
,則f(f(
1
3
))
=
1
2
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湛江二模)運行如圖的程序框圖,輸出的結果是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湛江二模)已知函數f(x)=2
3
sinxcosx+cos2x

(1)求f(
π
6
)
的值;
(2)設x∈[0,
π
4
]
,求函數f(x)的值域.

查看答案和解析>>

同步練習冊答案