(理)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0).過左焦點F1弦AB的端點A(m,
3
)
、B(n,-
3
3
5
)
,△ABF2的內(nèi)切圓半徑為
2
3
5
,則橢圓方程離心率為
 
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)S△ABF2=
1
2
•4a•
2
3
5
,S△ABF2=
1
2
•2c•(
3
+
3
3
5
),可得a、c間的關(guān)系,從而求得橢圓的離心率.
解答: 解:由題意利用橢圓的定義可得△ABF2的周長為4a,∵△ABF2的內(nèi)切圓半徑為
2
3
5
,
∴S△ABF2=
1
2
•4a•
2
3
5
=
4
3
5
a.
∵左焦點F1的弦AB的端點為A(m,
3
)、B(n,-
3
3
5
),
∴S△ABF2=
1
2
•2c•(
3
+
3
3
5
)=
8
3
5
c,
4
3
5
a
=
8
3
5
c,∴a=2c,故橢圓的離心率為
c
a
=
1
2

故答案為:
1
2
點評:本題重點考查橢圓的標(biāo)準(zhǔn)方程,考查橢圓的性質(zhì),考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β∈[0,
π
4
],則sin(α-β)+2sin(α+β)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體P-ABC中,PA=4,AC=2
7
,PB=PC=2
3
,PA⊥平面PBC,則四面體P-ABC的內(nèi)切球半徑與外接球半徑的比( 。
A、
2
16
B、
3
2
8
C、
3
2
16
D、
2
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x+
x2+1
),若f(-2)=3,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn滿足Sn=2an-2.
(1)求{an}的通項;
(2)若{bn}滿足b1=1,
bn+1
n+1
-
bn
n
=1,求數(shù)列{an
bn
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2,n∈N*
(1)若bn=
an
2n
,求數(shù)列{bn}的前n項和Pn
(2)若cn=
Sn
2n
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,集合A={x|x2-9<0},B={x|-1<x≤5},則A∩B=( 。
A、(3,5]
B、(-1,3)
C、(-3,-1)
D、(-3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2-1(x≤0)
x-2+lnx (x>0)
的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某上市股票在30填內(nèi)每股交易價格P(元)與時間t(天)組成有序數(shù)對(t,P),點(t,P)落在圖中的兩條線段上,該股票在30填內(nèi)的日交易量Q(萬股)與時間t(天)的部分數(shù)據(jù)如表所示:
第t天4101622
Q(萬股)36302418
(1)根據(jù)提供的圖象,寫出該種股票每股交易價格P(元)與時間t(天)所滿足的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)確定日交易量Q(萬股)與時間t(天)的一次函數(shù)關(guān)系式;
(3)用y表示該股票日交易額(萬元),寫出y關(guān)于t的函數(shù)關(guān)系式,并求在這30填中第幾天日交易額最大,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案