(2012•四川)如圖,半徑為R的半球O的底面圓O在平面α內(nèi),過(guò)點(diǎn)O作平面α的垂線交半球面于點(diǎn)A,過(guò)圓O的直徑CD作平面α成45°角的平面與半球面相交,所得交線上到平面α的距離最大的點(diǎn)為B,該交線上的一點(diǎn)P滿足∠BOP=60°,則A、P兩點(diǎn)間的球面距離為( 。
分析:由題意求出AP的距離,然后求出∠AOP,即可求解A、P兩點(diǎn)間的球面距離.
解答:解:半徑為R的半球O的底面圓O在平面α內(nèi),過(guò)點(diǎn)O作平面α的垂線交半球面于點(diǎn)A,過(guò)圓O的直徑CD作平面α成45°角的平面與半球面相交,所得交線上到平面α的距離最大的點(diǎn)為B,所以CD⊥平面AOB,
因?yàn)椤螧OP=60°,所以△OPB為正三角形,P到BO的距離為PE=
3
2
R
,E為BQ的中點(diǎn),AE=
R2+(
R
2
)
2
-2AO•OEcos45°
=
5-2
2
4
R
,
AP=
(
3
2
R)
2
+(
5-2
2
4
R)
2
=
8-2
2
2
R
,
AP2=OP2+OA2-2OP•OAcos∠AOP,
8-2
2
4
R2=R2+R2-2R2cos∠AOP

cos∠AOP=
2
4
,∠AOP=arccos
2
4

A、P兩點(diǎn)間的球面距離為Rarccos
2
4
,
故選A.
點(diǎn)評(píng):本題考查反三角函數(shù)的運(yùn)用,球面距離及相關(guān)計(jì)算,考查計(jì)算能力以及空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)如圖,在正方體ABCD-A1B1C1D1中,M、N分別是CD、CC1的中點(diǎn),則異面直線A1M與DN所成的角的大小是
90°
90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)如圖,動(dòng)點(diǎn)M到兩定點(diǎn)A(-1,0)、B(2,0)構(gòu)成△MAB,且∠MBA=2∠MAB,設(shè)動(dòng)點(diǎn)M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)直線y=-2x+m與y軸交于點(diǎn)P,與軌跡C相交于點(diǎn)Q、R,且|PQ|<|PR|,求
|PR||PQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)如圖,在三棱錐P-ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,點(diǎn)P在平面ABC內(nèi)的射影O在AB上.
(Ⅰ)求直線PC與平面ABC所成的角的大。
(Ⅱ)求二面角B-AP-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)如圖,動(dòng)點(diǎn)M與兩定點(diǎn)A(-1,0)、B(1,0)構(gòu)成△MAB,且直線MA、MB的斜率之積為4,設(shè)動(dòng)點(diǎn)M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)直線y=x+m(m>0)與y軸交于點(diǎn)P,與軌跡C相交于點(diǎn)Q、R,且|PQ|<|PR|,求
|PR||PQ|
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案