已知橢圓
x2
3
+
y2
4
=1的上焦點(diǎn)為F,直線x+y-1=0和x+y+1=0與橢圓分別相交于點(diǎn)A,B和C,D,則AF+BF+CF+DF=( 。
分析:利用直線過橢圓的焦點(diǎn),轉(zhuǎn)化為橢圓的定義去求解.
解答:解:如圖:兩條平行直線分別經(jīng)過橢圓的兩個(gè)焦點(diǎn),連接AF1,F(xiàn)D.
由橢圓的對(duì)稱性可知,四邊形AFDF1(其中F1是橢圓的下焦點(diǎn))為平行四邊形,所以AF1=FD,同理BF1=CF.
所以AF+BF+CF+DF=AF+BF+BF1+AF1=4a=8.
故選D.
點(diǎn)評(píng):本題主要考查了橢圓的方程和橢圓的性質(zhì),綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
3
+
y2
4
=1
的焦點(diǎn)F與拋物線C:y2=2px(p>0)的焦點(diǎn)關(guān)于直線x-y=0對(duì)稱.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知定點(diǎn)A(a,b),B(-a,0)(ab≠0,b2≠4a),M是拋物線C上的點(diǎn),設(shè)直線AM,BM與拋物線的另一交點(diǎn)為M1,M2.求證:當(dāng)M點(diǎn)在拋物線上變動(dòng)時(shí)(只要M1,M2存在且M1≠M(fèi)2)直線M1M2恒過一定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓與雙曲線
x23
-y2=1
有共同的焦點(diǎn),且過點(diǎn)P(2,3),求雙曲線的漸近線及橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)F1(0,-1),F(xiàn)2(0,1),P為橢圓上一點(diǎn),且2|F1F2|=|PF1|+|PF2|,則橢圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•長寧區(qū)二模)已知△ABC的頂點(diǎn)B、C在橢圓
x2
3
+y2=1上,且BC邊經(jīng)過橢圓的一個(gè)焦點(diǎn),頂點(diǎn)A是橢圓的另一個(gè)焦點(diǎn),則△ABC的周長是
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C以雙曲線
x23
-y2=1
的焦點(diǎn)為頂點(diǎn),以雙曲線的頂點(diǎn)為焦點(diǎn).
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于點(diǎn)M,N兩點(diǎn)(M,N不是左右頂點(diǎn)),且以線段MN為直徑的圓過橢圓C左頂點(diǎn)A,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案