已知函數(shù)f(x)=ex-ax,g(x)=xf(x),設(shè)曲線y=g(x)在點(diǎn)(-1,g(-1))處的切線為l(e是
自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),求曲線y=g(x)圖象上與l平行的切線l′的方程,并判斷l(xiāng)′與曲線y=f(x)是否存在公共點(diǎn)(若存在,請(qǐng)求出公共點(diǎn)的個(gè)數(shù),若不存在,請(qǐng)說(shuō)明理由).(參考數(shù)據(jù):ln2=0.69…,ln3=1.09…)
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求導(dǎo)數(shù),分類討論,利用導(dǎo)數(shù)的正負(fù),即可求f(x)的單調(diào)區(qū)間;
(Ⅱ)求出g′(-1)=2,由(x+1)ex-2x=2,可得x=-1或x=ln2,從而可得切線l′的方程;令h(x)=ex-x-(2x-ln22)=ex-3x+ln22,證明函數(shù)在(ln3,+∞)上單調(diào)遞增,在(-∞,ln3)上單調(diào)遞減,即可得出結(jié)論.
解答: 解:(Ⅰ)∵f(x)=ex-ax,
∴f′(x)=ex-a,
∴a≤0時(shí),f′(x)=ex-a>0,即函數(shù)在R上單調(diào)遞增;
a>0時(shí),f′(x)>0,可得x>lna,函數(shù)在(lna,+∞)上單調(diào)遞增,在(-∞,lna)上單調(diào)遞減;
(Ⅱ)當(dāng)a=1時(shí),g(x)=xf(x)=x(ex-x),
∴g′(x)=(x+1)ex-2x,
∴g′(-1)=2,
由(x+1)ex-2x=2,可得x=-1或x=ln2,
x=ln2時(shí),g(x)=ln2(2-ln2),
∴切線l′的方程為y-ln2(2-ln2)=2(x-ln2),即y=2x-ln22,
令h(x)=ex-x-(2x-ln22)=ex-3x+ln22,則h′(x)=ex-3,
∴函數(shù)在(ln3,+∞)上單調(diào)遞增,在(-∞,ln3)上單調(diào)遞減,
∴x=ln3時(shí),函數(shù)取得最大值h(ln3)=3-3ln3+ln22>0,
∴h(x)=0有兩解,
∴l(xiāng)′與曲線y=f(x)有兩個(gè)公共點(diǎn).
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性,正確構(gòu)造函數(shù),確定函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為2的菱形,且∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,則它的正視圖的面積是( 。
A、
3
B、
3
2
C、3
D、3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校推薦甲、乙、丙、丁4名同學(xué)參加A、B、C三所大學(xué)的自主招生考試.每名同學(xué)只推薦一所大學(xué),每所大學(xué)至少推薦一名.則不推薦甲同學(xué)到A大學(xué)的推薦方案有( 。
A、24種B、48種
C、54種D、60種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了調(diào)查我市在校中學(xué)生參加體育運(yùn)動(dòng)的情況,從中隨機(jī)抽取了16名男同學(xué)和14名女同學(xué),調(diào)查發(fā)現(xiàn),男、女同學(xué)中分別有12人和6人喜愛(ài)運(yùn)動(dòng),其余不喜愛(ài).   
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜愛(ài)運(yùn)動(dòng) 不喜愛(ài)運(yùn)動(dòng) 總計(jì)
16
14
總計(jì) 30
(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下認(rèn)為性別與喜愛(ài)運(yùn)動(dòng)有關(guān)?
(3)將以上統(tǒng)計(jì)結(jié)果中的頻率視作概率,從我市中學(xué)生中隨機(jī)抽取3人,若其中喜愛(ài)運(yùn)動(dòng)的人數(shù)為ξ,求ξ的分布列和均值.參考數(shù)據(jù):
P(K2≥k0 0.40 0.25 0.10 0.010
k0 0.708 1.323 2.706 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P(x0,y0)為橢圓
x2
4
+y=1內(nèi)一定點(diǎn)(不在坐標(biāo)軸上),過(guò)點(diǎn)P的兩直線分別與橢圓交于A,C和B,D,若AB∥CD.
(Ⅰ)證明:直線AB的斜率為定值;
(Ⅱ)過(guò)點(diǎn)P作AB的平行線,與橢圓交于E,F(xiàn)兩點(diǎn),證明:點(diǎn)P平分線段EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),記A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2,其中n∈N*
(1)若a1=1,a2=5,且對(duì)任意n∈N*,三個(gè)數(shù)A(n),B(n),C(n)依次組成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式.
(2)a1=1,對(duì)任意n∈N*,三個(gè)數(shù)A(n),B(n),C(n)依次組成公比為q的等比數(shù)列.求數(shù)列{an}的前n項(xiàng)和An公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人玩一種猜拳游戲,游戲規(guī)則如下:每人只出一只手(有5個(gè)手指頭),每次出手指數(shù)為0,1,2,3,4,5是等可能的,猜拳一次只猜“單”與“雙”兩個(gè)結(jié)果.規(guī)定:兩人手指數(shù)之和為偶數(shù)則規(guī)定猜“雙”者獲勝,手指數(shù)之和為奇數(shù)視為猜“單”者獲勝,兩人都猜中與兩人都沒(méi)猜中視為平局,獲勝方得2分,負(fù)方得0分,平局各得1分,只要有人累計(jì)得分達(dá)到4分或者4分以上,則游戲結(jié)束.
(1)求甲、乙兩人猜拳一次,甲獲勝的概率;
(2)求游戲結(jié)果時(shí),甲累計(jì)得分恰好為4分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的離心率為e=
6
3
,過(guò)C1的左焦點(diǎn)F1的直線l:x-y+2=0被圓C2:(x-3)2+(y-3)2=r2(r>0)截得的弦長(zhǎng)為2
2

(1)求橢圓C1的方程;
(2)設(shè)C1的右焦點(diǎn)為F2,在圓C2上是否存在點(diǎn)P,滿足|PF1|=
a2
b2
|PF2|,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,曲線C1的方程為ρcos(θ+
π
4
)=
2
,曲線C2的方程為ρ=2cos(π-θ),若點(diǎn)P在曲線C1上運(yùn)動(dòng),過(guò)點(diǎn)P作直線l與曲線C2相切于點(diǎn)M,則|PM|的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案