(本題滿分14分)已知橢圓的離心率為,右焦點也是拋物線的焦點。
(1)求橢圓方程;
(2)若直線與相交于、兩點。
①若,求直線的方程;
②若動點滿足,問動點的軌跡能否與橢圓存在公共點?若存在,求出點的坐標(biāo);若不存在,說明理由。
(1)根據(jù),即,據(jù)得,故,
所以所求的橢圓方程是。(3分)
(2)①當(dāng)直線的斜率為時,檢驗知。設(shè),
根據(jù)得得。
設(shè)直線,代入橢圓方程得,
故,得,
代入得,即,
解得,故直線的方程是。 (8分)
②問題等價于是不是在橢圓上存在點使得成立。
當(dāng)直線是斜率為時,可以驗證不存在這樣的點,
故設(shè)直線方程為。(9分)
用①的設(shè)法,點點的坐標(biāo)為,
若點在橢圓上,則,
即,
又點在橢圓上,故,
上式即,即,
由①知
,
代入得,
解得,即。(12分)
當(dāng)時,,
;
當(dāng)時,,
。
故上存在點使成立,
即動點的軌跡與橢圓存在公共點,
公共點的坐標(biāo)是。(14分)
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知向量 ,,函數(shù). (Ⅰ)求的單調(diào)增區(qū)間; (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知,且以下命題都為真命題:
命題 實系數(shù)一元二次方程的兩根都是虛數(shù);
命題 存在復(fù)數(shù)同時滿足且.
求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知函數(shù)
(1)若,求x的值;
(2)若對于恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)
已知橢圓:的離心率為,過坐標(biāo)原點且斜率為的直線與相交于、,.
⑴求、的值;
⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
((本題滿分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).
(1)當(dāng)x=2時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為,
求的最大值;
(3)當(dāng)取得最大值時,求二面角D-BF-C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com