在一次數(shù)學(xué)實踐活動課上,老師給一個活動小組安排了這樣的一個任務(wù):設(shè)計一個方案,將一塊邊長為4米的正方形鐵片,通過裁剪、拼接的方式,將它焊接成容積至少有5立方米的長方體無蓋容器(只有一個下底面和側(cè)面的長方體).該活動小組接到任務(wù)后,立刻設(shè)計了一個方案,如下圖所示,按圖1在正方形鐵片的四角裁去四個相同的小正方形后,將剩下的部分焊接成長方體(如圖2).請你分析一下他們的設(shè)計方案切去邊長為多大的小正方形后能得到的最大容積,最大容積是多少?是否符合要求?若不符合,請你幫他們再設(shè)計一個能符合要求的方案,簡單說明操作過程和理由.
【答案】分析:(1)設(shè)切去正方形邊長為x,利用長方體的體積公式求得其容積表達(dá)式,再利用導(dǎo)數(shù)研究它的極值,進而得出此函數(shù)的最大值即可.(2)在(1)中之所以不符合要求,主要原因是因為裁去四個相同的小正方形形成資源浪費,沒有充分利用現(xiàn)有材料,重新設(shè)計方案時,必須充分考慮材料不浪費.
解答:解:(1)設(shè)切去正方形邊長為x,則焊接成的長方體的底面邊長為4-2x,高為x,
所以V1=(4-2x)2•x=4(x3-4x2+4x)(0<x<2).(4分)
∴V1′=4(3x2-8x+4),(5分)
令V1′=0,即4(3x2-8x+4)=0,解得x1=,x2=2(舍去).(7分)
∵V1在(0,2)內(nèi)只有一個極值,
∴當(dāng)x=時,V1取得最大值<5,即不符合要求(9分)
(2)重新設(shè)計方案如下:
如圖①,在正方形的兩個角處各切下一個邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;如圖③,將圖②焊成長方體容器.新焊長方體容器底面是一個長方形,長為3,寬為2,此長方體容積V2=3×2×1=6,顯然V2>5.
故第二種方案符合要求.
(13分)
注:第二問答案不唯一.
點評:利用導(dǎo)數(shù)解決生活中的優(yōu)化問題,關(guān)鍵是要建立恰當(dāng)?shù)臄?shù)學(xué)模型,把問題中所涉及的幾個變量轉(zhuǎn)化為函數(shù)關(guān)系式,這需要通過分析、聯(lián)想、抽象和轉(zhuǎn)化完成.函數(shù)的最值要由極值和端點的函數(shù)值確定.當(dāng)函數(shù)定義域是開區(qū)間且在區(qū)間上只有一個極值時,這個極值就是它的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在一次數(shù)學(xué)實踐活動課上,老師給一個活動小組安排了這樣的一個任務(wù):設(shè)計一個方案,將一塊邊長為4米的正方形鐵片,通過裁剪、拼接的方式,將它焊接成容積至少有5立方米的長方體無蓋容器(只有一個下底面和側(cè)面的長方體).該活動小組接到任務(wù)后,立刻設(shè)計了一個方案,如下圖所示,按圖1在正方形鐵片的四角裁去四個相同的小正方形后,將剩下的部分焊接成長方體(如圖2).請你分析一下他們的設(shè)計方案切去邊長為多大的小正方形后能得到的最大容積,最大容積是多少?是否符合要求?若不符合,請你幫他們再設(shè)計一個能符合要求的方案,簡單說明操作過程和理由.精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分15分)在一次數(shù)學(xué)實踐活動課上,老師給一個活動小組安排了這樣的一個任務(wù):設(shè)計一個方案,將一塊邊長為4米的正方形鐵片,通過裁剪、拼接的方式,將它焊接成容積至少有5立方米的長方體無蓋容器(只有一個下底面和側(cè)面的長方體).該活動小組接到任務(wù)后,立刻設(shè)計了一個方案,如下圖所示,按圖1在正方形鐵片的四角裁去四個相同的小正方形后,將剩下的部分焊接成長方體(如圖2).請你分析一下他們的設(shè)計方案切去邊長為多大的小正方形后能得到的最大容積,最大容積是多少?是否符合要求?若不符合,請你幫他們再設(shè)計一個能符合要求的方案,簡單說明操作過程和理由. W ww.k s  5u.c om

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分15分)在一次數(shù)學(xué)實踐活動課上,老師給一個活動小組安排了這樣的一個任務(wù):設(shè)計一個方案,將一塊邊長為4米的正方形鐵片,通過裁剪、拼接的方式,將它焊接成容積至少有5立方米的長方體無蓋容器(只有一個下底面和側(cè)面的長方體).該活動小組接到任務(wù)后,立刻設(shè)計了一個方案,如下圖所示,按圖1在正方形鐵片的四角裁去四個相同的小正方形后,將剩下的部分焊接成長方體(如圖2).請你分析一下他們的設(shè)計方案切去邊長為多大的小正方形后能得到的最大容積,最大容積是多少?是否符合要求?若不符合,請你幫他們再設(shè)計一個能符合要求的方案,簡單說明操作過程和理由. W ww.k s  5u.c om

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (本小題滿分15分)在一次數(shù)學(xué)實踐活動課上,老師給一個活動小組安排了這樣的一個任務(wù):設(shè)計一個方案,將一塊邊長為4米的正方形鐵片,通過裁剪、拼接的方式,將它焊接成容積至少有5立方米的長方體無蓋容器(只有一個下底面和側(cè)面的長方體).該活動小組接到任務(wù)后,立刻設(shè)計了一個方案,如下圖所示,按圖1在正方形鐵片的四角裁去四個相同的小正方形后,將剩下的部分焊接成長方體(如圖2).請你分析一下他們的設(shè)計方案切去邊長為多大的小正方形后能得到的最大容積,最大容積是多少?是否符合要求?若不符合,請你幫他們再設(shè)計一個能符合要求的方案,簡單說明操作過程和理由. W ww.k s5 u.co m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省阜寧中學(xué)、大豐中學(xué)聯(lián)考高三(上)期中數(shù)學(xué)試卷(強化班)(解析版) 題型:解答題

在一次數(shù)學(xué)實踐活動課上,老師給一個活動小組安排了這樣的一個任務(wù):設(shè)計一個方案,將一塊邊長為4米的正方形鐵片,通過裁剪、拼接的方式,將它焊接成容積至少有5立方米的長方體無蓋容器(只有一個下底面和側(cè)面的長方體).該活動小組接到任務(wù)后,立刻設(shè)計了一個方案,如下圖所示,按圖1在正方形鐵片的四角裁去四個相同的小正方形后,將剩下的部分焊接成長方體(如圖2).請你分析一下他們的設(shè)計方案切去邊長為多大的小正方形后能得到的最大容積,最大容積是多少?是否符合要求?若不符合,請你幫他們再設(shè)計一個能符合要求的方案,簡單說明操作過程和理由.

查看答案和解析>>

同步練習(xí)冊答案