【題目】隨著共享單車的成功運(yùn)營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

總計(jì)

認(rèn)為共享產(chǎn)品對生活有益

認(rèn)為共享產(chǎn)品對生活無益

總計(jì)

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對生活無益的人員中隨機(jī)抽取人,再從人中隨機(jī)抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.

參與公式:

臨界值表:

【答案】(1) 可以在犯錯誤的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系(2)

【解析】試題分析:1)根據(jù)題中數(shù)據(jù),利用參考公式計(jì)算的觀測值,對應(yīng)查表下結(jié)論即可;

(2)從認(rèn)為共享產(chǎn)品增多對生活無益的女性中抽取4人,記為,從認(rèn)為共享產(chǎn)品增多對生活無益的男性中抽取2人,記為,寫出所有的基本事件,即可得到恰有1人是女性的概率.

試題解析:

(1)依題意,在本次的實(shí)驗(yàn)中, 的觀測值,

故可以在犯錯誤的概率不超過0.1%的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系;

2)依題意,應(yīng)該從認(rèn)為共享產(chǎn)品增多對生活無益的女性中抽取4人,記為,從認(rèn)為共享產(chǎn)品增多對生活無益的男性中抽取2人,記為,

從以上6人中隨機(jī)抽取2人,所有的情況為: 15種,其中滿足條件的為8種情況,故所求概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, , , ,點(diǎn)在線段,, , 平面.

(1)求證:平面平面;

(2)當(dāng)四棱錐的體積最大時求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)為,圓 ,過作垂直于軸的直線交拋物線、兩點(diǎn),且的面積為.

(1)求拋物線的方程和圓的方程;

(2)若直線、均過坐標(biāo)原點(diǎn),且互相垂直, 交拋物線,交圓, 交拋物線,交圓,求的面積比的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體,底面是菱形, , 平面, , , .

(1)求證: ;

(2)求平面與平面所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓: 的一個焦點(diǎn)與拋物線的焦點(diǎn)重合,且過點(diǎn).過點(diǎn)的直線交橢圓 兩點(diǎn), 為橢圓的左頂點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)求面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的成功運(yùn)營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機(jī)抽取1000人對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的1000人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

總計(jì)

認(rèn)為共享產(chǎn)品對生活有益

400

300

700

認(rèn)為共享產(chǎn)品對生活無益

100

200

300

總計(jì)

500

500

1000

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過0.1%的前提下,認(rèn)為共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)為了答謝參與問卷調(diào)查的人員,該公司對參與本次問卷調(diào)查的人員隨機(jī)發(fā)放1張超市的購物券,購物券金額以及發(fā)放的概率如下:

購物券金額

20元

50元

概率

現(xiàn)有甲、乙兩人領(lǐng)取了購物券,記兩人領(lǐng)取的購物券的總金額為,求的分布列和數(shù)學(xué)期望.

參考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)若的圖象與軸交于兩點(diǎn),起,求的取值范圍;

(3)令, ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,已知直線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為, ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四面體S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,則該四面體的外接球的表面積為

A. 11π B. C. D.

查看答案和解析>>

同步練習(xí)冊答案