2.已知直線y=ax與圓C:x2+y2-2ax-2y+2=0交于兩點A,B,且△CAB為等邊三角形,則圓C的面積為6π.

分析 根據(jù)△ABC為等邊三角形,得到圓心到直線的距離為Rsin60°,再根據(jù)點到直線的距離公式列出方程,求出圓的半徑即可.

解答 解:圓C化為x2+y2-2ax-2y+2=0,
即(x-a)2+(y-1)2=a2-1,
且圓心C(a,1),半徑R=$\sqrt{{a}^{2}-1}$,
∵直線y=ax和圓C相交,△ABC為等邊三角形,
∴圓心C到直線ax-y=0的距離為
Rsin60°=$\frac{\sqrt{3}}{2}$×$\sqrt{{a}^{2}-1}$,
即d=$\frac{{|a}^{2}-1|}{\sqrt{{a}^{2}+1}}$=$\frac{\sqrt{3{(a}^{2}-1)}}{2}$,
解得a2=7,
∴圓C的面積為πR2=π(7-1)=6π.
故答案為:6π.

點評 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,根據(jù)△ABC為等邊三角形,得到圓心到直線的距離是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.為了得到函數(shù)$y=2sin({3x+\frac{π}{6}})$的圖象,只需把y=2sinx的圖象上所有的點( 。
A.向右平移$\frac{π}{6}$,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
B.向左平移$\frac{π}{6}$,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
C.向右平移$\frac{π}{6}$,再把所得各點的橫坐標伸長到原來的$\frac{1}{3}$倍(縱坐標不變)
D.向左平移$\frac{π}{6}$,再把所得各點的橫坐標伸長到原來的$\frac{1}{3}$倍(縱坐標不變)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知球的半徑為R,若球面上兩點A,B的球面距離為$\frac{πR}{3}$,則這兩點A,B間的距離為R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.一個幾何體的三視圖如圖所示,其中俯視圖是一個腰長為2的等腰直角三角形,側(cè)視圖是一個直角邊長為1的直角三角形,則該幾何體外接球的體積是( 。
A.36πB.C.$\frac{9}{2}π$D.$\frac{27}{5}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知曲線C1的極坐標方程為ρcosθ-ρsinθ+2=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)),將曲線C2上的所有點的橫坐標變?yōu)樵瓉淼?倍,縱坐標變?yōu)樵瓉淼?\frac{3}{2}$倍,得到曲線C3
(1)寫出曲線C1的參數(shù)方程和曲線C3的普通方程;
(2)已知點P(0,2),曲線C1與曲線C3相交于A,B,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設(shè)直線l過雙曲線C的一個焦點,且與C的一條對稱軸垂直,l與C交于A,B兩點,|AB|為C的實軸長的2倍,則C的離心率為(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.復數(shù)$z=\frac{i}{1-i}$的共軛復數(shù)的模為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若集合A={0,1,2,4},B={1,2,3},則A∩B=(  )
A.{0,1,2,3,4}B.{0,1}C.{0,1,4}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.從某市統(tǒng)考的學生數(shù)學考試卷中隨機抽查100份數(shù)學試卷作為樣本,分別統(tǒng)計出這些試卷總分,由總分得到如下的頻率分布直方圖.
(1)求這100份數(shù)學試卷的樣本平均分$\overline x$和樣本方差s2
(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(2)由直方圖可以認為,這批學生的數(shù)學總分Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline x$,σ2近似為樣本方差s2
①利用該正態(tài)分布,求P(81<z<119);
②記X表示2400名學生的數(shù)學總分位于區(qū)間(81,119)的人數(shù),利用①的結(jié)果,求EX(用樣本的分布區(qū)估計總體的分布).
附:$\sqrt{366}$≈19,$\sqrt{326}$≈18,若Z=~N(μ,2),則P(μ-σ2),則P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

同步練習冊答案