已知命題p:|x|<2,命題q:x2-x-2<0,則p是q的     條件
【答案】分析:先求出命題p和命題q,然后再結(jié)合p和q的取值范圍進(jìn)行判斷.
解答:解:∵命題p:-2<x<2,命題q:-1<x<2,
∴p是q的必要不充分條件.
故答案:必要不充分.
點(diǎn)評(píng):本題考查充分條件、必要條件、充要條件的判斷,解題時(shí)要認(rèn)真審題,準(zhǔn)確求解p和q的取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:?x∈R,使x2-x+a=0;命題Q:函數(shù)y=
ax-1
ax2+ax+1
的定義域?yàn)镽.
(1)若命題P為真,求實(shí)數(shù)a的取值范圍;
(2)若命題Q為真,求實(shí)數(shù)a的取值范圍;
(3)如果P∧Q為假,P∨Q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈R,2x2+2x+
1
2
<0
;命題q:?x∈R,sinx-cosx=
2
.則下列判斷正確的是( 。
A、p是真命題
B、q是假命題
C、¬P是假命題
D、¬q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x=2k+1(k∈Z),命題q:x=4k-1(k∈Z),則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈R,x2+2ax+a≤0,則命題p的否定是
?x?R,x2+2ax+a>0
?x?R,x2+2ax+a>0
;若命題p為假命題,則實(shí)數(shù)a的取值范圍是
(0,1)
(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈R,使2x2+(k-1)x+
1
2
<0;命題q:方程
x2
9-k
-
y2
k-1
=1
表示雙曲線.若p∧q為真命題,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案