分析 (1)求出函數(shù)的定義域,利用指數(shù)的運(yùn)算法則化簡f(x)、f(-x),由函數(shù)奇偶性的定義判斷出奇偶性;
(2)利用指數(shù)函數(shù)的單調(diào)性判斷出f(x)的單調(diào)性,利用定義法證明函數(shù)單調(diào)性步驟:取值、作差、變形、定號、下結(jié)論進(jìn)行證明;
(3)由奇函數(shù)的性質(zhì)等價(jià)轉(zhuǎn)化不等式f(2x-1)+f(x+3)>0,由單調(diào)性列出不等式求出解集.
解答 解:(1)函數(shù)的定義域?yàn)镽,
因?yàn)閒(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+2}$=$\frac{-{2}^{x}+1}{{2(2}^{x}+1)}$=$\frac{1}{2}(\frac{2}{{2}^{x}+1}-1)$=$\frac{1}{{2}^{x}+1}-\frac{1}{2}$,
所以f(-x)=$\frac{1}{{2}^{-x}+1}-\frac{1}{2}$=$\frac{{2}^{x}}{{2}^{x}+1}-\frac{1}{2}$,
則f(x)+f(-x)=$\frac{1}{{2}^{x}+1}-\frac{1}{2}$+$\frac{{2}^{x}}{{2}^{x}+1}-\frac{1}{2}$=0,
所以f(x)是奇函數(shù);
(2)函數(shù)f(x)在(-∞,+∞)上為減函數(shù),
由(1)得,f(x)=$\frac{1}{{2}^{x}+1}-\frac{1}{2}$,
設(shè)任意x1,x2∈R,且x1<x2,
f(x1)-f(x2)=$\frac{1}{{2}^{{x}_{1}}+1}-\frac{1}{2}$-($\frac{1}{{2}^{{x}_{2}}+1}-\frac{1}{2}$)
=$\frac{1}{{2}^{{x}_{1}}+1}-\frac{1}{{2}^{{x}_{2}}+1}$=$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{{(2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$,
∵x1<x2,∴${2}^{{x}_{2}}-{2}^{{x}_{1}}>0$,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴函數(shù)f(x)在(-∞,+∞)上為減函數(shù);
(3)由(1)得f(x)是奇函數(shù),
∴不等式f(2x-1)+f(x+3)>0等價(jià)于f(2x-1)>f(-x-3),
∵函數(shù)f(x)在(-∞,+∞)上為減函數(shù),
∴2x-1<-x-3,解得x<$-\frac{2}{3}$,
∴不等式的解集是(-∞,$-\frac{2}{3}$).
點(diǎn)評 本題考查了利用定義法證明函數(shù)的奇偶性、單調(diào)性,指數(shù)的運(yùn)算法則、指數(shù)函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性和奇偶性求不等式的解集,考查轉(zhuǎn)化思想,化簡、變形能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,1] | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com