如圖,圓的割線ABC經(jīng)過(guò)⊙O圓心,AD為圓的切線,D為切點(diǎn),作CE⊥AD,交AD延長(zhǎng)線于E,若AB=2,AD=4,則CE的長(zhǎng)為
 
考點(diǎn):與圓有關(guān)的比例線段
專題:立體幾何
分析:連結(jié)OD,由題意知OD⊥AE,CE⊥AE,OD∥AE,由切割線定理得AD2=AB•AC,由此能求出CE的長(zhǎng).
解答: 解:連結(jié)OD,由題意知OD⊥AE,CE⊥AE,
∴OD∥AE,
∵圓的割線ABC經(jīng)過(guò)⊙O圓心,AD為圓的切線,D為切點(diǎn),
AB=2,AD=4,
∴AD2=AB•AC,
∴AC=
AD2
AB
=
42
2
=8
,
∴AO=5,OD=3,
∵OD∥AE,∴
OD
CE
=
AO
AC

∴CE=
AC•OD
AO
=
8×3
5
=
24
5

故答案為:
24
5
點(diǎn)評(píng):本題考查線段長(zhǎng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意切割線定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+ln(x-1)
x-a
(a為常數(shù)),x=2是函數(shù)f(x)的一個(gè)極值點(diǎn).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)如果當(dāng)x≥2時(shí),不等式f(x)≥
m
x
恒成立,求實(shí)數(shù)m的最大值;
(Ⅲ)求證:n-2(
1
2
+
2
3
+
3
4
+…+
n
n+1
)<ln(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,線性變換σ將點(diǎn)(1,0)變換為(1,0),將點(diǎn)(0,1)變換為(1,2).
(Ⅰ)試寫(xiě)出線性變換σ對(duì)應(yīng)的二階矩陣A;
(Ⅱ)求矩陣A的特征值及屬于相應(yīng)特征值的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=
2
2
,過(guò)橢圓的右焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線l與橢圓相交于A、B兩點(diǎn),且坐標(biāo)原點(diǎn)O到直線l的距離為
6
3
,∠AOB的大小是否為定值?若是求出該定值,不是說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示程序,輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
3x-1
2-x
1
2
的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將二進(jìn)制數(shù)110101(2)轉(zhuǎn)化為十進(jìn)制數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的兩焦點(diǎn)分別為F1(-2
2
,0)F2(2
2
,0),長(zhǎng)軸長(zhǎng)為6,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過(guò)點(diǎn)(0,2)且斜率為1的直線交橢圓C于A、B兩點(diǎn),求線段AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有4個(gè)興趣小組,甲、乙兩位同學(xué)各自參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組的可能性相同,則這兩位同學(xué)參加同一個(gè)興趣小組的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案