已知點(diǎn)F(1,0),直線L:x=-1,P為平面上的動點(diǎn),過點(diǎn)P作直線L的垂線,垂足為Q,且
QP
QF
=
FP
FQ

(1)求點(diǎn)P的軌跡C的方程;
(2)是否存在正數(shù)m,對于過點(diǎn)M(m,0)且與曲線C有兩個交點(diǎn)A,B的任一直線,都有
FA
FB
<0
?若存在,求出m的取值范圍;若不存在,請說明理由.
(1)設(shè)P的坐標(biāo)為(x,y),則Q(-1,y),可得
QP
=(x+1,0),
QF
=(2,-y),
FP
=(x-1,y),
FQ
=(-2,y),
QP
QF
=
FP
FQ
,
∴(x+1)•2=(x-1)(-2)+y2,化簡得y2=4x,
即動點(diǎn)P的軌跡C的方程為y2=4x.
(2)設(shè)l的方程為x=ty+m,過點(diǎn)M(m,0)(m>0)的直線l與
曲線C的交點(diǎn)為A(x1,y1),B(x2,y2).
x=ty+m
y2=4x
消去x,得y2-4ty-4m=0.…(*)
則y1、y2是方程(*)的兩根.
∴△=16(t2+m)>0,且
y1+y2=4t
y1y2=-4m

又∵
FA
=(x1-1,y1),
FB
=(x2-1,y2)

FA
FB
<0
,可得(x1-1)(x2-1)+y1y2<0,即x1x2-(x1-x2)+1+y1y2<0…②
由于x1x2=
y12
4
y22
4
,代入不等式②可得:
y21
4
y22
4
+y1y2-(
y21
4
+
y22
4
)+1<0

化簡得
(
y1
y2)
2
16
+y1y2-
1
4
[(y1+y2)2-2y1y2]+1<0
…③
由①式,化簡不等式③得m2-6m+1<4t2,…④
對任意實(shí)數(shù)t,不等式4t2≥0恒成立,
∴不等式④對于一切t成立等價于m2-6m+1<0,
解之得3-2
2
<m<3+2
2

由此可得:存在正數(shù)m,對于過點(diǎn)M(m,0),且與曲線C有兩個交點(diǎn)A,B的任一直線,
都有
FA
FB
<0
,且m的取值范圍是(3-2
2
,3+2
2
)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,動點(diǎn)P到兩點(diǎn)(-
3
,0),(
3
,0)的距離之和等于4,設(shè)點(diǎn)P的軌跡為曲線C,直線l過點(diǎn)E(-1,0)且與曲線C交于A,B兩點(diǎn).
(1)求曲線C的軌跡方程;
(2)若AB中點(diǎn)橫坐標(biāo)為-
1
2
,求直線AB的方程;
(3)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:x2+
y2
m
=1
的焦點(diǎn)在y軸上,且離心率為
3
2
.過點(diǎn)M(0,3)的直線l與橢圓C相交于兩點(diǎn)A、B.
(1)求橢圓C的方程;
(2)設(shè)P為橢圓上一點(diǎn),且滿足
OA
+
OB
OP
(O為坐標(biāo)原點(diǎn)),當(dāng)|
PA
|-|
PB
|<
3
時,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)(2,0),且離心率為
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)N(
2
,0)且斜率為
6
3
的直線l與橢圓C交于A,B兩點(diǎn),求證:
OA
OB
=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,線段AB的兩個端點(diǎn)A、B分別分別在x軸、y軸上滑動,|AB|=5,點(diǎn)M是AB上一點(diǎn),且|AM|=2,點(diǎn)M隨線段AB的運(yùn)動而變化.
(1)求點(diǎn)M的軌跡方程;
(2)設(shè)F1為點(diǎn)M的軌跡的左焦點(diǎn),F(xiàn)2為右焦點(diǎn),過F1的直線交M的軌跡于P,Q兩點(diǎn),求S△PQF2的最大值,并求此時直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)為F1,F(xiàn)2,且離心率為
3
2

(1)若過F1的直線交橢圓E于P,Q兩點(diǎn),且
PF1
=3
F1Q
,求直線PQ的斜率;
(2)若橢圓E過點(diǎn)(0,1),且過F1作兩條互相垂直的直線,它們分別交橢圓E于A,C和B,D,求四邊形ABCD面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,橢圓C上任意一點(diǎn)到橢圓兩焦點(diǎn)的距離和為6.求橢圓C的方程;
(2)直線l:y=kx+1與雙曲線C:2x2-y2=1的右支交于不同的兩點(diǎn)A、B.求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0)、B(1,0),動點(diǎn)C滿足條件:△ABC的周長為2+2
2
.記動點(diǎn)C的軌跡為曲線W.
(Ⅰ)求W的方程;
(Ⅱ)經(jīng)過點(diǎn)(0,
2
)且斜率為k的直線l與曲線W有兩個不同的交點(diǎn)P和Q,求k的取值范圍;
(Ⅲ)已知點(diǎn)M(
2
,0
),N(0,1),在(Ⅱ)的條件下,是否存在常數(shù)k,使得向量
OP
+
OQ
MN
共線?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
2
+
y2
=1
上的點(diǎn)到直線2x-y=7距離最近的點(diǎn)的坐標(biāo)為(  )
A.(-
4
3
,
1
3
B.(
4
3
,-
1
3
C.(-
4
3
,
17
3
D.(
4
3
,-
17
3

查看答案和解析>>

同步練習(xí)冊答案