橢圓
的離心率為
,右焦點到直線
的距離為
,過
的直線
交橢圓于
兩點
.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若直線
交
軸于
,
,求直線
的方程
.
(Ⅰ)設右焦點為
,則
……2分
又離心率
,
故橢圓方程為
!5分
(Ⅱ)設
,
,
,因為
,所以
…① …………………………………7分
易知當直線
的斜率不存在或斜率為0時①不成立,于是設
的方程為
,
聯(lián)立
消
得
…② ……………………9分
于是
…③
…④ …………………………11分
由①③得,
代入④整理得
,于是
,此時②的斷別式
,于是直線
的方程是
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
是橢圓
的左焦點,
是橢圓短軸上的一個頂點,橢圓的離心率為
,點
在
軸上,
,
三點確定的圓
恰好與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過
作斜率為
的直線
交橢圓于
兩點,
為線段
的中點,設
為橢圓中心,射線
交橢圓于點
,若
,若存在求
的值,若不存在則說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)已知橢圓
:
的右焦點為
,離心率為
.
(Ⅰ)求橢圓
的方程及左頂點
的坐標;
(Ⅱ)設過點
的直線交橢圓
于
兩點,若
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)如圖,已知橢圓
焦點為
,雙曲線
,設
是雙曲線
上
異于頂點的任一點,直線
與橢圓的交點分別為
和
。
1. 設直線
的斜率分別為
和
,求
的值;
2. 是否存在常數(shù)
,使得
恒成立?若存在,試求出
的值;若不存在,請說明理由。
3.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)已知橢圓的標準方程為
.
(1)求橢圓的長軸和短軸的大;
(2)求橢圓的離心率;
(3)求以此橢圓的長軸端點為短軸端點,并且經(jīng)過點P(-4,1)的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知雙曲線
,兩焦點為
,過
作
軸的垂線交雙曲線于
兩點,且
內(nèi)切圓的半徑為
,則此雙曲線的離心率為
▲ .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓
的離心率是
,則雙曲線
=1的離心率是______。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
是橢圓的兩焦點,
為橢圓上一點,若
,則離心率
的范圍是
___________.
查看答案和解析>>