已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=x2+4x,那么當(dāng)x<0時(shí),f(x)=________.

-x2+4x
分析:先設(shè)x<0,則-x>0,代入f(x)=x2+4x并進(jìn)行化簡(jiǎn),再利用f(x)=-f(-x)進(jìn)行求解.
解答:解:設(shè)x<0,則-x>0,
∵當(dāng)x>0時(shí),f(x)=x2+4x,∴f(-x)=x2-4x,
∵f(x)是定義在R上的奇函數(shù),∴f(x)=-f(-x)=-x2+4x,
故答案為:-x2+4x.
點(diǎn)評(píng):本題考查了函數(shù)奇偶性的應(yīng)用,即根據(jù)奇偶性對(duì)應(yīng)的關(guān)系式,將所求的函數(shù)解析式進(jìn)行轉(zhuǎn)化,轉(zhuǎn)化到已知范圍內(nèi)進(jìn)行求解,考查了轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤
π2
時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x).當(dāng)x<0時(shí),f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問(wèn):是否存在實(shí)數(shù)a,b(a≠b),使f(x)在x∈[a,b]時(shí),函數(shù)值的集合為[
1
b
1
a
]
?若存在,求出a,b;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:大連二十三中學(xué)2011學(xué)年度高二年級(jí)期末測(cè)試試卷數(shù)學(xué)(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿(mǎn)足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿(mǎn)足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個(gè)不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤數(shù)學(xué)公式時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案